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Updated from:
    Algorithms in Java, Chapter 2
    Intro to Programming in Java, Section 4.1
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Running time

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily 

guide the future course of the science.  Whenever any 

result is sought by its aid, the question will arise - By what 

course of calculation can these results be arrived at by the 

machine in the shortest time?  - Charles Babbage

Analytic Engine

how many times 
do you have to 
turn the crank?

Reasons to analyze algorithms

Predict performance

Compare algorithms

Provide guarantees

Understand theoretical basis

Primary practical reason: avoid performance bugs 

3

this course (COS 226)

theory of algorithms (COS 423)

Client gets poor performance because programmer
 did not understand performance characteristics
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Overview

Scientific analysis of algorithms:

        framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the universe.

• Hypothesize a model that is consistent with observation.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Universe = computer itself.
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Experimental algorithmics

Every time you run a program you are doing an experiment!

First step:

           Debug your program!

Second step:

           Decide on model for experiments on large inputs.

Third step:

           Run the program for problems of increasing size.

6

?? Why is my 
program so slow ?
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Experimental evidence: measuring time

• Manual: 

• Automatic:  Stopwatch.java 

Stopwatch sw = new Stopwatch();
// Run algorithm
double time = sw.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

public class Stopwatch 
{ 
   private final long start;

   public Stopwatch() 
   {  start = System.currentTimeMillis();  }

   public double elapsedTime() 
   {  
      long now = System.currentTimeMillis();
      return (now - start) / 1000.0;
   }
}

client code

implementation
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Experimental algorithmics

Many obvious factors affect running time.

• machine

• compiler

• algorithm

• input data

More factors (not so obvious):

• caching

• garbage collection

• just-in-time compilation

• CPU use by other applications

Bad news: it is often difficult to get precise measurements

Good news: we can run a huge number of experiments [stay tuned]

Approach 1: Settle for affordable approximate results

Approach 2: Count abstract operations (machine independent)
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Models for the analysis of algorithms

Total running time:  sum of cost ! frequency for all operations.

• Need to analyze program to determine set of operations

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available 

Donald Knuth
1974 Turing Award

Developing models for algorithm performance

In principle, accurate mathematical models are available [Knuth]

In practice,

• formulas can be complicated

• advanced mathematics might be required

Ex.

Exact models best left for experts

Bottom line: We use approximate models in this course: TN ~ c N log N
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TN  =  24 AN + 11BN + 4CN + 3DN + 7N + 9SN

where

AN = 2(N+1) / 3

BN = (N + 1) (2HN+1 - 2H3 -1)/6 + 1/2

CN = (N + 1) (2HN+1 - 2H3 + 1)

DN = (N + 1)(1 - 2H3/3) 

SN = (N + 1)/5 - 1

all constants rolled into one

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)
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Commonly used notations to model running time

notation provides example shorthand for used to

Big Theta growth rate "(N2)
N2

9000 N2

 5 N2 + 22 N log N + 3N

classify

algorithms

Big Oh "(N2) and smaller O(N2)
N2

100 N
 22 N log N + 3N

develop

upper bounds

Big Omega "(N2) and larger #(N2)
9000 N2

N5

 N3 + 22 N log N + 3N

develop

lower bounds

Tilde leading term ~ 10 N2

10 N2

10 N2 + 22 N log N
10 N2 + 2 N +37

provide

approximate model

used in 
this course



Predictions and guarantees

Theory of algorithms: The running time of an algorithm is O(f(N)) 

advantages

• describes guaranteed performance

• O-notation absorbs input model

challenges

• cannot use to predict performance

• cannot use to compare algorithms
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worst case implied

time

input size

f(N)

values represented
by O(f(N))

Predictions and guarantees (continued)

This course: The running time of an algorithm is  ~ c f(N)

advantages

• can use to predict performance

• can use to compare algorithms

challenges

• need to develop accurate input model

• may not provide guarantees
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time

input size

c f(N)

values represented
by ~ c f(N)

understanding of alg’s dependence on input implied
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Case study [stay tuned for numerous algorithms and applications]

Sorting problem: rearrange N given items into ascending order

Hauser

Hong

Hsu

Hayes

Haskell

Hornet

...

...

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

...

...

public static void less(double x, double y)

{  return x < y; }

public static void exch(double[] a, int i, int j)

{ 

   double t = a[i];

   a[i] = a[j];

   a[j] = t;

}

Basic operations: compares and exchanges

compare

exchange
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Selection sort: an elementary sorting algorithm

Algorithm invariants

• $ scans from left to right.

• Elements to the left of $ are fixed and in ascending order.

• No element to left of $ is larger than any element to its right.

in final order
$
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Selection sort inner loop

• move the pointer to the right

• identify index of minimum item on right.

• Exchange into position. 

Maintains algorithm invariants

int min = i;
for (int j = i+1; j < N; j++)
   if (less(a[j], a[min]))
      min = j;            

exch(a, i, min);

$

$ $

$ $

i++;
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Selection sort:  Java implementation

public static void sort(double[] a)

{

   for (int i = 0; i < a.length; i++)

   {

      int min = i;
      for (int j = i+1; j < a.length; j++)
         if (less(a[j], a[min]))
            min = j;
      exch(a, i, min);
   }
}

most frequent operation
(“inner loop”)
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Selection sort:  initial observations

Observe, tabulate and plot operation counts for various values of N.

• study most frequently performed operation (compares)

• input model:  N random numbers between 0 and 1

N compares

2,000 2.1 million

4,000 7.9 million

8,000 32.1 million

16,000 125.9 million

32,000 514.7 million

200M

100M

4K 8K 16K 32K2K

300M

400M

500M

600M

add counter to less()
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Data analysis.  Plot # compares vs. input size on log-log scale.

Regression.  Fit straight line through data points  %  a Nb.

Hypothesis.  # compares is ~ N2/2     

Selection sort:  experimental hypothesis

slope

power law

2M

4M

8M

16M

32M

64M

2K 4K 8K 16K

lg C = lg a + b lg N

log-log scale

32K

C = a Nb

normal scale

128M

256M

512M

N compares

2,000 2.1 million

4,000 7.9 million

8,000 32.1 million

16,000 125.9 million

32,000 514.7 million

slope is 2

Selection sort: theoretical model

Hypothesis: number of compares is N + (N-1) +  ... + 2 + 1 ~ N2/2
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each black entry
 is 1 compare

                      a[i]

 i min   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E

 0   6   S  O  R  T  E  X  A  M  P  L  E

 1   4   A  O  R  T  E  X  S  M  P  L  E

 2  10   A  E  R  T  O  X  S  M  P  L  E

 3   9   A  E  E  T  O  X  S  M  P  L  R

 4   7   A  E  E  L  O  X  S  M  P  T  R

 5   7   A  E  E  L  M  X  S  O  P  T  R

 6   8   A  E  E  L  M  O  S  X  P  T  R

 7  10   A  E  E  L  M  O  P  X  S  T  R

 8   8   A  E  E  L  M  O  P  R  S  T  X

 9   9   A  E  E  L  M  O  P  R  S  T  X

10  10   A  E  E  L  M  O  P  R  S  T  X

         A  E  E  L  M  O  P  R  S  T  X

= N(N + 1) / 2
= N2/2 + N/2
~ N2/2

circled entry is
min value found

gray entries
are untouched
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Selection sort:  Prediction and verification

Hypothesis (experimental and theoretical).  # compares is ~ N2/2.

Prediction.  800 million compares for N = 40,000.

Observations.

Prediction.  20 billion compares for N = 200,000.

Observation.

19.997 billion200,000

comparesN

799.7 million40,000

801.6 million40,000

800.8 million40,000

comparesN

801.3 million40,000

Verifies.

Verifies.

Selection sort: validation

Implicit assumptions

• constant cost per compare

• cost of compares dominates running time

Hypothesis: Running time is ~ c N2

Validation: Observe actual running time.

Regression fit validates hypothesis.
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N observed time .23x10-7 N2

2,000 0.1 seconds 0.1

4,000 0.4 seconds 0.4

8,000 1.5 seconds 1.5

16,000 5.6 seconds 5.9

32,000 23.2 seconds 23.5

A scientific connection between program and natural world.

.1 sec

.4 sec

1.6 sec

2K 4K 8K 16K 32K

6.4 sec

25.6 sec
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Insertion sort: another elementary sorting algorithm

Algorithm invariants

• $ scans from left to right.

• Elements to the left of $ are in ascending order.

in order not yet seen

$
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Insertion sort inner loop

• move the pointer to the right

• moving from right to left, exchange

a[i] with each larger element to its left

Maintains algorithm invariants

for (int j = i; j > 0; j--)

   if (less(a[j], a[j-1]))

        exch(a, j, j-1);

   else break;

i++;

in order not yet seen

$

in order not yet seen

$$$$

Insertion sort: Java implementation
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public static void sort(Comparable[] a)

{

   int N = a.length;

   for (int i = 0; i < N; i++)

      for (int j = i; j > 0; j--)

         if (less(a[j], a[j-1]))

              exch(a, j, j-1);

         else break;

}

Insertion sort: theoretical model
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each black entry
 is 1 compare/exch

                       a[i]

 i   j   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E

 1   0   O  S  R  T  E  X  A  M  P  L  E

 2   1   O  R  S  T  E  X  A  M  P  L  E

 3   3   O  R  S  T  E  X  A  M  P  L  E

 4   0   E  O  R  S  T  X  A  M  P  L  E

 5   5   E  O  R  S  T  X  A  M  P  L  E

 6   0   A  E  O  R  S  T  X  M  P  L  E

 7   2   A  E  M  O  R  S  T  X  P  L  E

 8   4   A  E  M  O  P  R  S  T  X  L  E

 9   2   A  E  L  M  O  P  R  S  T  X  E

10   2   A  E  E  L  M  O  P  R  S  T  X

         A  E  E  L  M  O  P  R  S  T  X

Hypothesis: number of compares is (1 + 2 + ... + (N-1) + N)/2 ~ N2/4

on the average, for randomly ordered input

insertions are halfway back, on the average

circled entry is
inserted item

gray entries
are untouched



Experimental comparison of insertion sort and selection sort

Plot both running times on log log scale

• slopes are the same (both 2)

• both are quadratic

Compute ratio of running times

Need detailed analysis

to prefer one over the other

Neither is useful for huge randomly-ordered files
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.1 sec

.4 sec

1.6 sec

2K 4K 8K 16K 32K

6.4 sec

25.6 sec

% java SortCompare Insertion Selection 4000

For 4000 random double values

Insertion is 1.7 times faster than selection

Would Be Nice (if analysis of algorithms were always this easy), But

Mathematics might be difficult

Ex. It is known that properties of singularities of functions 

in the complex plane play a role in analysis of many algorithms

Leading term might not be good enough

Ex. Selection sort could be linear-time if cost of exchanges is huge

 

Actual data might not match model

Ex. Insertion sort could be linear-time if keys are roughly in order

Timing may be flawed

• different results on different computers

• different results on same computer at different times
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assumption that compares dominate may be invalid

assumption that input is randomly ordered may be invalid
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Practical approach to developing hypotheses

First step: determine asymptotic growth rate for chosen model

• approach 1: run experiments, regression

• approach 2: do the math

• best: do both

Good news: the relatively small set of functions

                1,  log N,  N,  N log N,  N2,  N3, and 2N

suffices to describe asymptotic growth rate of typical algorithms

After determining growth rate

• use doubling hypothesis (to predict performance)

• use ratio hypothesis (to compare algorithms)

32



Common asymptotic-growth hypotheses (summary)
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growth
rate

name typical code framework description example

1 constant a = b + c; statement add two numbers

log N logarithmic
while (N > 1)
{   N = N / 2;  ...   } divide in half binary search

N linear
for (int i = 0; i < N; i++)
{  ...       } loop find the maximum

N log N linearithmic [see next lecture]
divide

and conquer
sort an array

N2 quadratic
for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)
   {  ...       }

double loop check all pairs

N3 cubic

for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)
      for (int k = 0; k < N; k++)
      {  ...       }

triple loop check all triples

2N exponential [see lecture 24]
exhaustive

search
check all 

possibilities

Aside: practical implications of asymptotic growth

For back-of-envelope calculations, assume

How long to process millions of inputs?

How many inputs can be processed in minutes?
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decade
processor

speed

instructions

per second

1970s 1M Hz

1980s 10M Hz

1990s 100M Hz

2000s 1G Hz

1

seconds

102

103

104

105

106

107

108

109

1010

1 second

equivalent

1.7 minutes

17 minutes

2.8 hours

1.1 days

1.6 weeks

3.8 months

3.1 years

3.1 decades

3.1 centuries

forever

1017 age of
universe

. . .

10 10 seconds
106

107

108

109

Ex. Population of NYC was “millions” in 1970s; still is

Ex. Customers lost patience waiting “minutes” in 1970s; still do

Aside: practical implications of asymptotic growth
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growth
rate

problem size solvable in minutes time to process millions of inputs

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

1 any any any any instant instant instant instant

log N any any any any instant instant instant instant

N millions
tens of
millions

hundreds of
millions

billions minutes seconds second instant

N log N
hundreds of
thousands

millions millions
hundreds of

millions
hour minutes

tens of
seconds

seconds

N2 hundreds thousand thousands
tens of

thousands
decades years months weeks

N3 hundred hundreds thousand thousands never never never millenia

Practical implications of asymptotic-growth: another view
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growth
rate

name description

effect on a program that
runs for a few seconds

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size a few seconds same

log N logarithmic nearly independent of input size a few seconds same

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for large problems several weeks 4-5x

2N exponential useful only for tiny problems forever 1x



Developing asymptotic order of growth hypotheses with doubling

To formulate hypothesis for asymptotic growth rate:

• compute T(2N)/T(N) as accurately (and for N as large) as is affordable 

• use this table
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ratio hypothesis reason

1
constant

or
 logarithmic

c / c = 1

c log 2N / c log N ~ 1

2
linear

or
linearithmic

c 2N / c N = 2

c 2 N log (2N) / c N log N ~ 2

4 quadratic c (2N)2 / c N2 = 4

9 cubic c (2N)2 / c N2 = 9

= 2 log(2N)/log N
= 2 (log 2 + log N)/log N 
= 2 + 2 log 2/log N 
~ 2

T

2T

4T

1K 2K 4K

cu
b
ic1024T

1024K

qu
ad

ra
ti

c

lin
ea

r
lin

ea
rit

hm
ic

constant

logarithmic

time

size

Example revisited: methods for timing sort algorithms
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public static double time(String alg, Double[] a)
{

   Stopwatch sw = new Stopwatch();

   if (alg.equals("Insertion")) Insertion.sort(a);
   if (alg.equals("Selection")) Selection.sort(a);

   if (alg.equals("Shell")) Shell.sort(a);
   if (alg.equals("Merge")) Merge.sort(a);

   if (alg.equals("Quick")) Quick.sort(a);

   return sw.elapsedTime();
}

public static double timetrials(String alg, int N, int trials)
{

   double total = 0.0;

   Double[] a = new Double[N];
   for (int t = 0; t < trials; t++)

   {
      for (int i = 0; i < N; i++)

         a[i] = StdRandom.uniform();

      total += time(alg, a);
   }

   return total;
}

Compute time to sort a[] with alg

Compute total time to  to sort trials arrays of N random doubles with alg

Developing asymptotic order of growth hypotheses with doubling
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public class SortGrowth
{

   public static void main(String[] args)

   {
      String alg = args[0];

      int N = 1000;
      if (args.length > 1)

          N = Integer.parseInt(args[1]);

      int trials = 100;
      if (args.length > 2)

          trials = Integer.parseInt(args[2]);
      double ratio = timetrials(alg, 2*N, trials);

                              / timetrials(alg, N, trials);

      StdOut.printf("Ratio is %f\n", ratio);
      if (ratio > 1.8 && ratio < 2.2)

         StdOut.printf("  %s is linear or linearithmic\n", alg);
      if (ratio > 3.8 && ratio < 4.2)

         StdOut.printf("  %s is quadratic\n", alg);

   }

}

THIS CODE

MAY NOT

BE READY

FOR THE

REAL WORLD

CAUTION

% java SortGrowth Selection
Ratio is 4.1
  Selection is quadratic

% java SortGrowth Insertion
Ratio is 3.645756

% java SortGrowth Insertion 4000 1000
Ratio is 3.969934
  Insertion is quadratic

Predicting performance with doubling hypotheses

A practical approach to predict running time:

• analyze algorithm and run experiments to develop hypothesis that

asymptotic growth rate of running time is ~ c T(N)

• run algorithm for some value of N, measure running time

• prediction: increasing input size by a factor of 2

                  increases running time by a factor of T(2N)/T(N) 

Use algorithm itself to implicitly compute leading-term constant
40

N observed time

2,000 0.1 seconds

4,000 0.4 seconds

8,000 1.5 seconds

16,000 5.6 seconds

32,000 23.2 seconds

numbers increase
by a factor of 2

numbers increase
by a factor of 4

Example: selection sort
growth 

rate
name

T(2N) 
T(N)

1 constant 1

log N logarithmic ~1

N linear 2

N log N linearithmic ~2

N2 quadratic 4

N3 cubic 9



Predicting performance with doubling hypotheses
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public class SortPredict
{

   public static void main(String[] args)

   {
      String alg = args[0];

      int trials = 100;
      if (args.length > 1) trials = Integer.parseInt(args[1]);

      StdOut.printf("Seconds for %d trials\n", trials);

      StdOut.printf("       predicted actual\n  1000        ");
      double old = Double.POSITIVE_INFINITY;

      for (int N = 1000; true; N = 2*N)
      {

         total = timeTrials(alg, N, trials);

         double guess = (total/old)*total;
         StdOut.printf(" %7.1f\n %5d %7.1f", total, 2*N, guess);

         old = total;
      }

   }

}

THIS CODE

MAY NOT

BE READY

FOR THE

REAL WORLD

CAUTION

% java SortPredict Selection
Seconds for 100 trials
         predicted   actual
  1000                0.9
  2000       0.0      3.5
  4000      13.9     14.4
  8000      58.8     58.9
 16000     240.9    239.2
 32000     971.6

Note: SortGrowth is not needed!

[This code works for any power law.]

and deep math says that running time 
of typical algs must satisfy power law

Comparing algorithms with ratio hypotheses

A practical way to compare algorithms A and B with the same growth rate

• hypothesize that running times are ~ cA f(N) and ~ cB f(N) 

• run algorithms for some value of N, measure running times

• Prediction: Algorithm A is a factor of cA/cB faster than Algorithm B

                

To compare algorithms with different growth rates

• hypothesize that the one with the smaller rate is faster

• validate hypothesis for inputs of interest

[values of constants may be significant]

To determine whether growth rates are the same or different

• compute ratios of running times as input size doubles

• [growth rates are the same if ratios do not change]

Use algorithms themselves to compute complex leading-term constants
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Comparing algorithms with ratio hypothesis
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public class SortCompare
{

   public static void main(String[] args)

   {
      String alg1 = args[0];

      String alg2 = args[1];
      int N  = Integer.parseInt(args[2]);

      int trials = 100;

      if (args.length > 3) trials = Integer.parseInt(args[3]);
      double time1 = 0.0;

      double time2 = 0.0;
      Double[] a1 = new Double[N];

      Double[] a2 = new Double[N];

      for (int t = 0; t < trials; t++)
      {

         for (int i = 0; i < N; i++)
         {  a1[i] = Math.random(); a2[i] = a1[i]; }

         time1 += time(alg1, a1);

         time2 += time(alg2, a2);
      }

      StdOut.printf("For %d random Double values\n    %s is", N, alg1);
      StdOut.printf(" %.1f times faster than %s\n", time2/time1, alg2);

   }
}

THIS CODE

MAY NOT

BE READY

FOR THE

REAL WORLD

CAUTION

% java SortCompare Insertion Selection 4000
For 4000 random Double values
    Insertion is 1.7 times faster than Selection

best to test algs on same input

Summary: turning the crank

Yes, analysis of algorithms might be challenging, BUT

Mathematics might be difficult?

• only a few functions seem to turn up

• doubling, ratio tests cancel complicated constants

Leading term might not be good enough?

• debugging tools are available to identify bottlenecks

• typical programs have short inner loops

Actual data might not match model?

• need to understand input to effectively process it

• approach 1: design for the worst case

• approach 2: randomize, depend on probabilistic guarantee

Timing may be flawed?

• limits on experiments insignificant compared to other sciences

• different computers are different!
44


