Stacks and Queues

» stacks

» dynamic resizing
» queues

» generics

» applications

Stacks and Queues

Fundamental data types.
¢ Values: sets of objects
¢ Operations: insert, remove, fest if empty.
¢ Intent is clear when we insert.
¢ Which item do we remove?
LIFO = "last in first out"
Stack. <
* Remove the item most recently added.
e Analogy: cafeteria trays, Web surfing.
FIFO = "first in first out"
Queue. e
¢ Remove the item least recently added.
e Analogy: Registrar's line.

enqee =1 [T TTTTTT]

@ push
% pop

|:(> dequeue

Client, Implementation, Interface

Separate interface and implementation so as to:
¢ Build layers of abstraction.

* Reuse software.

e Ex: stack, queue, symbol table.

Interface: description of data type, basic operations.
Client: program using operations defined in interface.
Implementation: actual code implementing operations.

Client, Implementation, Interface

Benefits.
e Client can't know details of implementation =
client has many implementation from which to choose.
¢ Implementation can't know details of client needs =
many clients can re-use the same implementation.
¢ Design: creates modular, re-usable libraries.
e Performance: use optimized implementation where it matters.

Interface: description of data type, basic operations.
Client: program using operations defined in interface.
Implementation: actual code implementing operations.

Stacks

Stack operations.

* push()

Insert a new item onto stack.

* pop() Remove and return the item most recently added.

* isEmpty ()

Is the stack empty?

& push

public static void main(String[] args)

{

StackOfStrings stack = new StackOfStrings();
while (!StdIn.isEmpty())
{

String s = StdIn.readString() ;
stack.push(s) ;

}
while (!stack.isEmpty())
{

String s = stack.pop() ;
StdOut.println(s) ;

a sample stack client

Qﬁ pop

Stack pop: Linked-list implementation

first

of —> best — > the — > was — > it

first

best —> the —> was —> it

first

best ——>» the —> was —> it

item = first.item;

first = first.next;

return item;

Stack push: Linked-list implementation

first

best ———> the —— was —> it
first second

best ——» the —— was —— it second = first;
first second

v V

best ———» the —>» was ——» it

first second

of ——> best —> the —>» was —> it LR, A

first.next

first = new Node();

item;
second;

Stack: Linked-list implementation

public class StackOfStrings
{

private Node first = null;

private class Node
{
String item;
Node next;

<«—— "inner class"

}

public boolean isEmpty ()
{ return first == null; }

public void push(String item)
{
Node second = first;
first = new Node() ;
first.item item;
first.next second;

}
public String pop()

{
String item = first.item;
first = first.next;
return item;

}

Error conditions?
Example: pop() an empty stack

COS 217: bulletproof the code
COS 226: first find the code we want to use

Stack: Array implementation

public class StackOfStrings
{
private String[] s;
private int N = 0;

public StringStack(int capacity)

{ s = new String[capacity];

public boolean isEmpty ()
{ return N == 0; }

public void push(String item)
{ s[N++] = item; }

public String pop ()

{
String item = s[N-1]; avoid loitering
s[N-1] = null; «————————— (garbage collector only reclaims memory
N--; if no outstanding references)
return item;
}

Stack: Array implementation

Array implementation of a stack.

e Usearray s[] to store N items on stack.
e push() add new item at s[N].

* pop() remove item from s[N-1].

s[1] it was the best

» dynamic resizing

Stack array implementation: Dynamic resizing

Q. How to grow array when capacity reached?
Q. How to shrink array (else it stays big even when stack is small)?

First try:
e push(): increase size of s[] by 1
e pop() : decrease size of s[] by 1

Too expensive
¢ Need to copy all of the elements to a new array.
¢ Inserting N elements: time proportional to1+2+ ..+ N = N2/2.

f

infeasible for large N

Need to guarantee that array resizing happens infrequently I

Stack array implementation: Dynamic resizing

Q. How to grow array?
A. Use repeated doubling:

if array is full, create a new array of twice the size, and copy items

public StackOfStrings ()

no-argument { this(8); }

constructor

public void push(String item)

{
if (N >= s.length) resize();
s[N++] = item;

}

private void resize (int max)

create new arra . -

copy items fo iTy St““‘:‘” ?uP = new str:.x_xg[max];

for (int i = 0; i < N; i++)
dup[i] = s[i];

s = dup;

Consequence. Inserting N items takes time propo;‘rional to N (not N?).

8+16+..+N/4+N/2+N = 2N

Stack array implementation: Dynamic resizing
Q. How (and when) to shrink array?

How: create a new array of half the size, and copy items.
When (first try): array is half full?
No, causes thrashing
(push-pop-push-pop-... sequence: time proportional to N for each op)

When (solution): array is 1/4 full (then new array is half full).

public String pop(String item)
{
String item = s[--N]

; Not a.length/2
sa[N] = null; / to avoid thrashing
if (N == s.length/4)

resize(s.length/2);
return item;

Consequences.

¢ any sequence of N ops takes time proportional to N
e array is always between 25% and 100% full

Stack Implementations: Array vs. Linked List

Stack implementation tradeoffs. Can implement with either array or
linked list, and client can use interchangeably. Which is better?

Array.

* Most operations take constant time.

¢ Expensive doubling operation every once in a while.

¢ Any sequence of N operations (starting from empty stack)
takes time proportional to N. N

"amortized" bound

Linked list.

e Grows and shrinks gracefully.

e Every operation takes constant time.

e Every operation uses extra space and time to deal with references.

Bottom line: tossup for stacks
but differences are significant when other operations are added

Stack implementations: Array vs. Linked list

Which implementation is more convenient?

array? linked list?
return count of elements in stack
remove the kth most recently added

sample a random element

Queues

Queue operations.

* enqueue () Insert a new item onto queue.

* dequeue () Delete and return the item least recently added.
e isEmpty() Is the queue empty?

public static void main(String[] args)

{
QueueOfStrings q = new QueueOfStrings() ; @3‘&_’
g.enqueue ("Vertigo") ; Q
gq.enqueue ("Just Lose It");
g.enqueue ("Pieces of Me");
g.enqueue ("Pieces of Me");
System.out.println(q.dequeue()) ;
g.enqueue ("Drop It Like It's Hot");

while (!q.isEmpty ()

System.out.println(q.dequeue()) ;

Dequeue: Linked List Implementation

first last

|

it —> was —> the —> best —> of item = first.item;

first last

|

was —> the —> best —> of first = first.next;

first last

|

was —>» the —> best—> of return item;

Aside:
dequeue (pronounced "DQ") means “remove from a queue”
deque (pronounced "deck") is a data structure (see PA 1)

20

Enqueue: Linked List Implementation

first last

it ——» was ——» the ——» best

first last x
l l ‘L x = new Node() ;
it ——>» was ——>» the ——» best of X.item = item;
x.next = null;
first last x
it —> was —> the ——> best ——> of last.next = x;
first last x
it —> was —> the —> best ——> of last = x;
21
Queue: Array implementation
Array implementation of a queue.
e Use array q[] to store items on queue.
* enqueue(): add new object at q[tail].
* dequeue(): remove object from q[head].
¢ Update head and tail modulo the capacity.
qll the best of times
0 1 2 3 4 5 6 7 8 9
head tail capacity = 10

[details: good exercise or exam question]

23

Queue: Linked List Implementation

public class QueueOfStrings
{
private Node first;
private Node last;

private class Node
{ String item; Node next; }

public boolean isEmpty ()
{ return first == null; }

public void enqueue (String item)
{
Node x = new Node() ;
x.item = item;
x.next = null;
if (isEmpty()) { first = x; last = x; }
else { last.next x; last = x; }

}

public String dequeue()

{
String item = first.item;
first first.next;
return item;

22

» generics

24

Generics (parameterized data types)
We implemented: stackofstrings, QueueOfStrings.
We also want: StackOfURLs, QueueOfCustomers, efc?
Attempt 1. Implement a separate stack class for each type.
¢ Rewriting code is tedious and error-prone.

¢ Maintaining cut-and-pasted code is tedious and error-prone.

@#$*! most reasonable approach until Java 1.5 [hence, used in AlgsJava]

25

Stack of Objects
We implemented: stackofstrings, QueueOfStrings.
We also want: StackOfURLs, QueueOfCustomers, etc?

Attempt 2. Implement a stack with items of type object.
¢ Casting is required in client.
e Casting is error-prone: run-fime error if types mismatch.

Stack s = new Stack();
Apple a = new Apple();
Orange b = new Orange() ;
s.push(a) ;
s.push(b) ;

run-fime error
a = (apple) (s.pop());

26

Generics

Generics. Parameterize stack by a single type.
* Avoid casting in both client and implementation.
¢ Discover type mismatch errors at compile-time instead of run-time.

parameter

Stack<Apple> s = new Stack<Apple>();
Apple a = new Apple();

Orange b = new Orange() ;

s.push(a) ;
s.push(b) ;

a = s.pop();

compile-time error

no cast needed in client

Guiding principles.

¢ Welcome compile-time errors
¢ Avoid run-time errors

Why?

27

Generic Stack: Linked List Implementation

public class Stack<Item>

private Node first =

private class Node X
Generic type name

Node next;

}

public boolean isEi
{ return first =s

{
Item item = first.item;
first = first.next;
return item;

28

Generic stack: array implementation Generic stack: array implementation

The way it should be. The way it is: an ugly cast in the implementation.

public class Stack<Item>
{
private Item[] s;
private int N = 0;

public Stack(int cap)
{ s = new Item[cap]; }

public boolean isEmpty ()
{ return N ==

public void push(Item item)
{ s[N++] = item; }

public String pop()
{
Item item = s[N-1];

StackOfStrings

String s
int N

StackOfStrings (int cap)
s new String[cap }

boolean isEmpty
N }

void push(String item
s[N item }

String pop

String item s[N

public class Stack<Item>
{
private Item[] s;
private int N = 0;

public Stack(int cap)

{ s = (Item[]) new Object[cap]; } <«—— theuglycast

public boolean isEmpty ()
{ return N == 0; }

public void push(Item item)
{ s[N++] = item; }

public String pop()
{
Item item = s[N-1];

s[N-1] = null; s[N null s[N-1] = null;
N--; N N--;
return item; item return item;

@#$*! generic array creation not allowed in Java

Number of casts in good code: O
29 30

Generic data types: autoboxing
Generic stack implementation is object-based.
What to do about primitive types?
Wrapper type.
¢ Each primitive type has a wrapper object type.
e Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Stack<Integer> s = new Stack<Integer>();
s.push(17) ; // s.push(new Integer(17));
int a = s.pop(); // int a = ((int) s.pop()) .intValue() ;

» applications

Bottom line: Client code can use generic stack for any type of data I

31 32

Stack Applications Function Calls

Real world applications. How a compiler implements functions.

e Parsing in a compiler. e Function call: push local environment and return address.
e Java virtual machine. e Return: pop return address and local environment.

¢ Undo in a word processor.

¢ Back button in a Web browser. Recursive function. Function that calls itself.

* PostScript language for printers. Note. Can always use an explicit stack to remove recursion.

e Implementing function calls in a compiler.

gcd (216, 192)
gcd (192, 24)

p =216, q = 192

gcd (24, 0)

static int ged(int p, int q) {
if (q == 0) return p;
else return ged(q, p % q);
}

33

Arithmetic Expression Evaluation Arithmetic Expression Evaluation

Goal. Evaluate infix expressions.

ublic class Evaluate {
(1+C(C2+3)*(4*5))) value stack 1 s P!
operatorstack | [<1+ ((2327 (475)) public static void main(String[] args) {
operand operator %u(zu)*(us))) Stack<String> ops = new Stack<String>();
Stack<Double> vals = new Stack<Double>() ;

1
T ((2+3)%(47%5)))
while (!StdIn.isEmpty()) {

Two-stack algori‘rhm. [E. W. Dijks*r‘a] I2: +3)*(4%5)3) String s = StdIn.readString();

e Value: push onto the value stack. F—nraem if (s.equals (" (")) 8
. 0=...,. else if (s.equals("+")) ops.push(s) ;

e Operator: push onto the operator stack. s olse if (s.equals("*")) ops.push (s) ;

e Left parens: ignore. e else if (s.equals(")")) {

¢ Right parens: pop operator and two values; o String op = ops.pop();

. if (op.equals("+")) vals.push(vals.pop() + vals.pop());
pUSh *he I"CSUIT Of applymg ﬂ'\ClT oper‘ator‘ Ii *533) else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
to those values onto the operand stack. o }

"
else vals.push (Double.parseDouble(s)) ;

=) : 2
[20 5 Evaluat:

. . StdOut.println(vals.pop()); % java Evaluate

Context. An interpreter! o] } (1+ ((2+3)* (4*5)))

2 101.0
101)
| I—

35 Note: Old books have two-pass algorithm because generics were not available!

Correctness

Why correct?
When algorithm encounters an operator surrounded by two values
within parentheses, it leaves the result on the value stack.

(1+((2+3) * (4*5)))
as if the original input were:
(1+(5* (4*5)))

Repeating the argument:

(1+ (5%*20))
(1 + 100)
101

Extensions. More ops, precedence order, associativity.
1+ (2 -3 -4) *5 * sqrt(6 + 7)

37

Stack-based programming languages

Observation 1.
Remarkably, the 2-stack algorithm computes the same value
if the operator occurs after the two values.

(1 ((23+) (45*) *) +)

Observation 2.
All of the parentheses are redundant!

123+ 45 * * +

Jan Lukasiewicz

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, ...

38

Stack-based programming languages: PostScript

Page description language
o explicit stack

e full computational model
¢ graphics engine

Basics

%!: "I am a PostScript program”

literal: “push me on the stack”

function calls take args from stack

turtle graphics built in]

%!
72 72 moveto

a PostScript program 0 72 rlineto
72 0 rlineto
0 -72 rlineto
-72 0 rlineto
2 setlinewidth
stroke

39

Stack-based programming languages: PostScript

Data types

e basic: integer, floating point, boolean, ...
¢ graphics: font, path,

e full set of built-in operators

Text and strings like System.out.print()
e full font support /

* show (display a string, using current font)
e cvs (convert anything to a string) by

like toString()

%!

/Helvetica-Bold findfont 16 scalefont setfont
72 168 moveto

(Square root of 2:) show

72 144 moveto

2 sqrt 10 string cvs show

40

Stack-based programming languages: PostScript

Variables (and functions)
e identifiers start with /
e def operator associates id with value

e braces
e args oh stack

%!

function definition——> /box

function calls

{
/sz exch def
0 sz rlineto
sz 0 rlineto
0 sz neg rlineto
sz neg 0 rlineto
} def

72 144 moveto
’///,,» 72 box

288 288 moveto
T 144 box

2 setlinewidth

stroke

41

Stack-based programming languages: PostScript

for loop

e “from, increment, to" on stack
¢ loop body in braces

e for operator

1120
{ 19 mul dup 2 add moveto 72 box }
for

if-else
¢ boolean on stack

¢ alternatives in braces
e if operator

... (hundreds of operators)

42

Stack-based programming languages: PostScript

An application: all figures in Algorithms in Java

%!

72 72 translate

/kochR
{

2 copy ge { dup 0O rlineto }

{
div
copy
copy
copy
2 copy
} ifelse
Pop pop
} def

NNDNDW

0 0 moveto
0 81 moveto
0 162 moveto
0 243 moveto
stroke

kochR 60 rotate
kochR -120 rotate
kochR 60 rotate
kochR

81 243 kochR
27 243 kochR
9 243 kochR
1 243 kochR

See page 218

Algorithms
INJava

43

Queue applications

Familiar applications.

* iTunes playlist.

Data buffers (iPod, TiVo).

* Asynchronous data transfer (file IO, pipes, sockets).

¢ Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

e Traffic analysis.

¢ Waiting times of customers at call center.

¢ Determining number of cashiers to have at a supermarket.

44

M/D/1 queuing model

M/D/1 queue.
e Customers are serviced at fixed rate of u per minute.
e Customers arrive according to Poisson process at rate of A per minute.

AN

inter-arrival time has exponential distribution

PrX<x] = 1-¢™

Arrival rate A — — Departure rate u

Infinite queue Server

Q. What is average wait time W of a customer?
Q. What is average number of customers L in system?

45

M/D/1 queuing model: example

To to

'
Eﬁ:jln
c:)ﬁin =
'
%hnln
? 10
arrival departure wait
© 0 5 5
2 10 8
7 15 8
=3 L
-?+ 17 23 6
?@ M 19 28 9
' 21 30 9
ﬁincz
v 20
ﬁ%DCjED
(D] ﬁ%:]lﬂ
™ [?
? 30

46

M/D/1 queuing model: experiments and analysis

Observation.
As service rate u approaches arrival rate A, service goes to h***.

% java MD1Queue .167 .25

% java MD1Queue .167 .22

Little's Law
ng theory (see ORFE309). W = =2+ L. 1 % w
Queueing theory (see : 2u(u-A) p
0

wait fime W and queue length L approach infinity as service rate approaches arrival rate 5

M/D/1 queuing model: event-based simulation

public class MD1lQueue
{
public static void main(String[] args)
{
double lambda Double.parseDouble (args[0]) ; // arrival rate
double mu Double.parseDouble (args[1]) ; // service rate
Histogram hist = new Histogram(60) ;
Queue<Double> g = new Queue<Double>() ;
double nextArrival StdRandom. exp (lambda) ;
double nextService 1/mu;
while (true)

{

while (nextArrival < nextService)
{

g.enqueue (nextArrival) ;

nextArrival += StdRandom.exp (lambda) ;
}
double wait = nextService - g.dequeue();
hist.addDataPoint (Math.min (60, (int) (wait)));
if (!q.isEmpty())

nextService = nextArrival + 1/mu;
else

nextService = nextService + 1/mu;

48

