COS 226 Algorithms and Data Structures Spring 2003

Midterm Solutions

1. Sorting algorithms.
042571013689

Insertion: the algorithm has sorted the first 12 strings, but hasn’t touched the remaining
22 strings.

Bubble: the smallest 12 strings are in their final sorted order. jam was bubbled down so
it’s not selection sort.

LSD: the strings are sorted on their last character.
MSD. The strings are sorted on their first character.
Shellsort: The file is 4- and 13-sorted.

3-way radix quicksort: after 3-way partitioning on the j in jam, all smaller keys are in
the top piece, all larger keys are in the bottom piece, and all keys that begin with j are
in the middle piece.

Heapsort: the first phase of heapsort puts the keys in reverse order in the heap.

Mergesort: the algorithm has sorted the first 17 strings and the last 17 strings. One
final merge will put the strings in sorted order.

Quicksort: after partitioning on jam, all smaller keys are in the top piece, all smaller
keys are in the bottom piece.

Selection: the smallest 15 strings are in their final sorted order. jam didn’t move so it’s
not bubble sort.

2. Heaps.

2

©000d0 00



3. Tries.
156, 273, 365, 376

4. Choosing the right algorithms and data structures.

(a) What is the primary reason to use a binomial queue instead of a binary heap?
Faster join

(b) What is the primary reason to use a randomized BST instead of a binary heap?
Faster search

(¢c) What is the primary reason to use double probing instead of linear probing?

Achieve same search times with less memory

(d) What is the primary reason to use the Boyer-Moore right-to-left scan algorithm instead
of the Knuth-Morris-Pratt algorithm?

Faster average-case search

5. Red-black trees.




6. Programming assignments.

The inner loop gets executed N3 times. It consists of two additions and one comparison;
the innermost for loop also does one increment and one comparison. This is a total of 5N3
instructions. The outer and middle loops are inconsequential — O(N) and O(N?) instructions,
respectively.

(a) Estimate how many seconds it will take (in the worst case) to solve a problem of size
N = 1,0007
5 seconds

(b) Of size N = 10,0007
5,000 seconds

7. Programming assignments.

There are many possible solutions.

Hashing (similar to Assignment 3). Insert all of the integers a[k] in a symbol table.
Then, enumerate over all pairs i and j to see if (a[i] + a[j] + alk] == 0) for some k. To
check this, search for -(al[i] + a[j]) in the symbol table.

for (k = 0; k < N; i++)
Insert alk] into a symbol table

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
Search for -(ali] + al[jl) in the symbol table
If found return 1

return O

For the symbol table, use a linear probing hash table with capacity 2/N. Assuming you have a
decent hash function, each search and insert takes O(1) time. The algorithm requires O(N?)
time and 8N extra bytes of memory. You could use a BST instead of a hash table; with
a splay tree, the running time would be O(N?log N) and it would use 12N extra bytes of
memory.



Sorting (similar to Assignment 1). First sort the integers a[k] in increasing order. Then,
enumerate over all pairs i and j to see if (a[i] + a[j] + alk] == 0) for some k. To check
this, binary search for -(al[i] + a[j]) in the sorted array.

sort(a, 0, N - 1);

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
Binary search for -(ali] + al[jl)
If found, return 1

return O

Sorting takes O(Nlog N) time; each search takes O(log N) time using binary search. The
total running time is dominated by the N? searches and is O(N?log N). Only a constant
amount of extra space is needed, e.g., with heapsort and a non-recursive binary search.

Novel sorting based algorithm. Here’s a nice idea to get an algorithm that runs in O(N?)
time while only using O(1) extra space. First sort the integers a[k] in increasing order (using
heapsort or insertion sort to avoid any extra memory). Then enumerate over all k and try to
find i and j such that a[i]l + al[j] + alk] == 0. Scan from the left to find i and from the
right to find j. Because of the sorted ordering, you can advance either i or j according to
whether the sum al[i] + a[j] + alk] is positive or negative.

sort(a, 0, N - 1);

for (k = 0; k < N; k++)
i=0;
j = N-1;
while(i <= j)
sum = ali] + al[j] + alk];

if (sum < 0) i++;

else if (sum > 0) j--—;

else return 1;
return O




