-
When to Change Which Process is Running? 3 €¥:

Processes and Pipes

COS 217
Prof. David August

-

Life Cycle of a Process

* When a process is stalled waiting for I/O
o Better utilize the CPU, e.g., while waiting for disk access

- CPU /0 CPU 1/0 CPU I/0

2 - CPU /o CPU I/0 CPU I/0

* When a process has been running for a while

o Sharing on a fine time scale to give each process the
illusion of running on its own machine

o Trade-off efficiency for a finer granularity of fairness

p
Switching Between Processes

* Running: instructions are being executed
 Waiting: waiting for some event (e.g., I/O fin

* Ready: ready to be assigned to a processor

ﬁ@ﬁ

ish)

— (Termination

Process 1 Process 2

Running montext | | Waiting
| Load CM

Save context

i A
- T\@ontext | Waiting

Waiting Running

Wait

QL‘H’

|

Exec

4 N\ [)
Fork Fork
» Create a new process (system call) « Inherited: «Separate in child
o child process inherits state from parent process suser and group IDs o process ID
o parent and child have separate copies of that state - signal handling settings ° ?Fd&ess ?Ptace (memory)
o parent and child share access to any open files »stdio ° Tie gescriptors
. . parent process |D
. ofile pointers | _ > pending signals
pid = fork(); Parent o current working directory > timer signal reset times
if (pid != 0) { oroot directory °. ..
/* in parent */ o file mode creation mask
ce oresource limits
} else { Child ocialntroll;qr.ng term_lnal
/* in child */ o all machine register
. states
} o control register(s)
))
4 N\ [)

‘??
Erh)

» Parent waits for a child (system call)
o blocks until a child terminates
o returns pid of the child process

o returns —1 if no children exists (already exited)
o gtatus

#include <sys/types.h>
#include <sys/wait.h>

pid t wait(int *status):

« Parent waits for a specific child to terminate
#include <sys/types.h>
#include <sys/wait.h>

pid t waitpid(pid t pid, int *status, int

options);

» Overlay current process image with a specified image file

(system call)

o affects process memory and registers

o has no affect on file table

» Example:

execlp (“1e”, #“lg”, “-1”, NULL);

fprintf (stderr,
exit (1) ;

exec failed\n”);

4 N\ [
Fork/Exec System
» Commonly used together by the shell » Convenient way to invoke fork/exec/wait
. parse command line ...
. o Forks new process
pid = fork()
if (pid == -1) o Exeps commgnd
fprintf (stderr, “fork failed\n”); csh ° Waits until it is complete
else if (pid == 0) { l
/* in child */ - A int system(const char *cmd);
execvp (file, argv); <Eor_]_{_>
fprintf (stderr, _A_ E |
“ , "y . o oo wait » Example:
exec failed\n”); \\i}fecyﬁ CYal,t_' P
} else { . .
int main ()
/* in parent */
pid = wait(&status); system (“echo Hello world”);
}
... return to top of loop ...
)
4 N\ [
Networks Interprocess Communication
* Mechanism by which two processes exchange information _
and coordinate activities * Pipes
- Processes must be on same machine
Computer Computer o One process spawns the other
@ o Used mostly for filters
_ ~ Ty .
Computer ? < D Sockets |
4 Notwork = Processes can be on any machme
- Processes can be created independently
o Used for clients/servers, distributed systems, etc.
Computer CO! rgdlisy
1]) 12/

Pipe Example

QL‘H’

sl 5,

Dup

4 N\
Pipes Creating a Pipe f
» Provides an interprocess communication channel
i s
Process A F" . (HEPU Process B
Process AM. I'\:—inﬂ-Process B o o]
» Pipe is a communication channel abstraction
= Process A can write to one end using “write” system call
o . o Process B can read from the other end using “read” system call
+ Afilter is a process that reads from stdin and writes to
stdout » System call
int pipe(int £d4d[2]);
. return 0 upon success —1 upon failure
stdin | porgar stdout | fd[0] is open for reading
fd[1l] is open for writing
. . : . » Two coordinated processes created by fork can pass
Progl—4____F—fFilter—4__}—{Filter —{_——{Prog2 data to each other using a pipe.
1{} 1{/
4 N\

gli’
ok

int pid, pl2];

if (pipe(p) == -1)
exit(1);

pid = fork();

if (pid == 0) {
close(p[l]);

}

else {
close(p[0]);
close(p[1]);
wait (&status) ;

}

parent

.. read using p[0] as fd until EOF ...

. write using pl[l] as f£f4 ...
/* sends EOF to reader */

write .

i: read

child

)

stdin/stdout

int £d4;

close(0):;
dup (£d) ;
close(£fd);

fd = open(“foo”, O RDONLY,

» Duplicate a file descriptor (system call)
int dup(int fd);
duplicates £4 as the lowest unallocated descriptor

« Commonly used to implement redirection of

+ Example: redirect stdin to “foo”

0);

)

- N
Dup?2 Pipes and Stdio
» For convenience... {ac pid, plals
i pipe(p) == -1)
dup2(int £d1, int £d2); o
use £d2 (new) to duplicate £d1 (old) if (pid == 0) {
g . close(pl[l]);
closes £42 if it was in use dup2 (p[01,0) ;
+ Example: redirect stdin to “foo” O end Erom stain ...
fd = open(“foo”, O RDONLY, 0); else {
. close(p[0]);
duPZ {fd" l:” ' dup2(pE[)l].l);
ClGEE(fd}; close(p[1]);
. write to stdout ...
} wait(&status);fd=l £d=0
parent %‘ ¢ éte(?l(ll] child
17/ ’
- N
Pipes and Exec A Unix Shell!

int pid, pl2];

if (pipe(p) == -1)
exit(l);

pid = fork():

if (pid == 0) {
close(p[1]);
dup2 (p[0],0);
close(p[0]);
execl(...);

else {
close(p([0]1);
dup2 (p[1],1);
close(p[1]);
. write to stdout ...

wait (&status) ;
) £d=1 £4-0
write . mread
" i —|—l‘_
parent stdout Vstdin

child

2

» Loop
o Read command line from stdin
o Expand wildcards
o Interpret redirections < > |
o pipe (as necessary), fork, dup, exec, wait

shelll

« Start from code on previous slides, edit it until it's a Unix

J

