
1

Computer Architecture
and Assembly Language

Prof. David August

COS 217

2

Goals of Today’s Lecture
• Computer architecture
o Central processing unit (CPU)
o Fetch-decode-execute cycle
o Memory hierarchy, and other optimization

• Assembly language
o Machine vs. assembly vs. high-level languages
o Motivation for learning assembly language
o Intel Architecture (IA32) assembly language

3

Levels of Languages
• Machine language
o What the computer sees and deals with
o Every command is a sequence of one or more numbers

• Assembly language
o Command numbers replaced by letter sequences that

are easier to read
o Still have to work with the specifics of the machine itself

• High-level language
o Make programming easier by describing operations in a

natural language
o A single command replaces a group of low-level

assembly language commands

4

Why Learn Assembly Language?
• Understand how things work underneath
o Learn the basic organization of the underlying machine
o Learn how the computer actually runs a program
o Design better computers in the future

• Write faster code (even in high-level language)
o By understanding which high-level constructs are better
o … in terms of how efficient they are at the machine level

• Some software is still written in assembly language
o Code that really needs to run quickly
o Code for embedded systems, network processors, etc.

5

A Typical Computer

CPU

ChipsetMemory
I/O bus

CPU. . .

Network

ROM

6

Von Neumann Architecture
• Central Processing Unit
o Control unit

– Fetch, decode, and execute
o Arithmetic and logic unit

– Execution of low-level operations
o General-purpose registers

– High-speed temporary storage
o Data bus

– Provide access to memory

• Memory
o Store instructions
o Store data

Random Access
Memory (RAM)

Control
Unit

ALU

CPU

Registers

Data bus

7

Control Unit
• Instruction pointer
o Stores the location of the next instruction

– Address to use when reading from memory
o Changing the instruction pointer

– Increment by one to go to the next instruction
– Or, load a new value to “jump” to a new location

• Instruction decoder
o Determines what operations need to take place

– Translate the machine-language instruction
o Control the registers, arithmetic logic unit, and memory

– E.g., control which registers are fed to the ALU
– E.g., enable the ALU to do multiplication
– E.g., read from a particular address in memory

8

Example: Kinds of Instructions
• Storing values in registers

o count = 0
o n

• Arithmetic and logic operations
o Increment: count++
o Multiply: n * 3
o Divide: n/2
o Logical AND: n & 1

• Checking results of comparisons
o while (n > 1)
o if (n & 1)

• Jumping
o To the end of the while loop (if “n > 1”)
o Back to the beginning of the loop
o To the else clause (if “n & 1” is 0)

count = 0;
while (n > 1) {

count++;
if (n & 1)
n = n*3 + 1;

else
n = n/2;

}

9

Size of Variables
• Data types in high-level languages vary in size
o Character: 1 byte
o Short, int, and long: varies, depending on the computer
o Pointers: typically 4 bytes
o Struct: arbitrary size, depending on the elements

• Implications
o Need to be able to store and manipulate in multiple sizes
o Byte (1 byte), word (2 bytes), and extended (4 bytes)
o Separate assembly-language instructions

– e.g., addb, addw, addl
o Separate ways to access (parts of) a 4-byte register

10

Four-Byte Memory Words

Memory

232-1

0

Byte order is little endian

31 08 716 15

.

.

.

24 23

Byte 4
Byte 0

Byte 5
Byte 1Byte 2

Byte 6
Byte 3
Byte 7

11

IA32 General Purpose Registers

General-purpose registers

EAX
EBX
ECX
EDX
ESI
EDI

31 0 16-bit 32-bit
AX
BX
CX
DX

DI
SI

ALAH
BL
CL
DL

BH
CH
DH

8 715

12

Registers for Executing the Code
• Execution control flow
o Instruction pointer (EIP)

– Address in memory of the current instruction
o Flags (EFLAGS)

– Stores the status of operations, such as comparisons
– E.g., last result was positive/negative, was zero, etc.

• Function calls (more on these later!)
o Stack register (ESP)

– Address of the top of the stack
o Base pointer (EBP)

– Address of a particular element on the stack
– Access function parameters and local variables

13

Other Registers that you don’t much care about

• Segment registers
o CS, SS, DS, ES, FS, GS

• Floating Point Unit (FPU) (x87)
o Eight 80-bit registers (ST0, …, ST7)
o 16-bit control, status, tag registers
o 11-bit opcode register
o 48-bit FPU instruction pointer, data pointer registers

• MMX
o Eight 64-bit registers

• SSE and SSE2
o Eight 128-bit registers
o 32-bit MXCRS register

• System
o I/O ports
o Control registers (CR0, …, CR4)
o Memory management registers (GDTR, IDTR, LDTR)
o Debug registers (DR0, …, DR7)
o Machine specific registers
o Machine check registers
o Performance monitor registers

14

Reading IA32 Assembly Language
• Assembler directives: starting with a period (“.”)
o E.g., “.section .text” to start the text section of memory
o E.g., “.loop” for the address of an instruction

• Referring to a register: percent size (“%”)
o E.g., “%ecx” or “%eip”

• Referring to a constant: dollar sign (“$”)
o E.g., “$1” for the number 1

• Storing result: typically in the second argument
o E.g. “addl $1, %ecx” increments register ECX
o E.g., “movl %edx, %eax” moves EDX to EAX

• Comment: pound sign (“#”)
o E.g., “# Purpose: Convert lower to upper case”

15

movl %edx, %eax
andl $1, %eax
je .else

jmp .endif
.else:

.endif:
sarl $1, %edx

movl %edx, %eax
addl %eax, %edx
addl %eax, %edx
addl $1, %edx

addl $1, %ecx

.loop:
cmpl $1, %edx
jle .endloop

jmp .loop
.endloop:

movl $0, %ecx

Detailed Example

count=0;
while (n>1) {

count++;
if (n&1)
n = n*3+1;

else
n = n/2;

}

n %edx
count %ecx

16

Flattening Code Example

count=0;
while (n>1) {

count++;
if (n&1)
n = n*3+1;

else
n = n/2;

}

17

Machine-Language Instructions
Instructions have the form

op source, dest “dest ← dest ⊕ source”

operation (move, add, subtract, etc.)

first operand (and destination)

second operand

Instruction Format:
operand operandoperandopcode

18

Instruction
• Opcode

o What to do

• Source operands
o Immediate (in the instruction itself)
o Register
o Memory location
o I/O port

• Destination operand
o Register
o Memory location
o I/O port

• Assembly syntax
Opcode source1, [source2,] destination

19

How Many Instructions to Have?
• Need a certain minimum set of functionality

o Want to be able to represent any computation that can be expressed
in a higher-level language

• Benefits of having many instructions
o Direct implementation of many key operations
o Represent a line of C in one (or just a few) lines of assembly

• Disadvantages of having many instructions
o Larger opcode size
o More complex logic to implement complex instructions
o Hard to write compilers to exploit all the available instructions
o Hard to optimize the implementation of the CPU

20

CISC vs. RISC
Complex Instruction Set Computer

(old fashioned, 1970s style)

Examples:

Vax (1978-90)

Motorola 68000 (1979-90)

8086/80x86/Pentium (1974-2025)

Instructions of various lengths,
designed to economize on
memory (size of instructions)

Reduced Instruction Set Computer

(“modern”, 1980s style)

Examples:

MIPS (1985-?)

Sparc (1986-2006)

IBM PowerPC (1990-?)

ARM

Instructions all the same size and
all the same format, designed to
economize on decoding
complexity (and time, and power
drain)

21

Data Transfer Instructions
•mov{b,w,l} source, dest

o General move instruction

•push{w,l} source
pushl %ebx # equivalent instructions

subl $4, %esp
movl %ebx, (%esp)

•pop{w,l} dest
popl %ebx # equivalent instructions

movl (%esp), %ebx
addl $4, %esp

• Many more in Intel manual (volume 2)
o Type conversion, conditional move, exchange, compare and

exchange, I/O port, string move, etc.

esp
esp

esp
esp

22

Data Access Methods
• Immediate addressing: data stored in the instruction itself

o movl $10, %ecx

• Register addressing: data stored in a register
o movl %eax, %ecx

• Direct addressing: address stored in instruction
o movl 2000, %ecx

• Indirect addressing: address stored in a register
o movl (%eax), %ebx

• Base pointer addressing: includes an offset as well
o movl 4(%eax), %ebx

• Indexed addressing: instruction contains base address, and
specifies an index register and a multiplier (1, 2, or 4)
o movl 2000(,%ecx,1), %ebx

23

Effective Address

• Displacement movl foo, %ebx

• Base movl (%eax), %ebx

• Base + displacement movl foo(%eax), %ebx
movl 1(%eax), %ebx

• (Index * scale) + displacement movl (,%eax,4), %ebx

• Base + (index * scale) + displacement movl foo(,%eax,4), %ebx

eax
ebx
ecx
edx
esp
ebp
esi
edi

eax
ebx
ecx
edx
esp
ebp
esi
edi

+

1
2
3
4

* +

None

8-bit

16-bit

32-bit

Offset =

Base Index scale displacement

24

Bitwise Logic Instructions
• Simple instructions

and{b,w,l} source, dest dest = source & dest
or{b,w,l} source, dest dest = source | dest
xor{b,w,l} source, dest dest = source ^ dest
not{b,w,l} dest dest = ^dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

• Many more in Intel Manual (volume 2)
o Logic shift
o Rotation shift
o Bit scan
o Bit test
o Byte set on conditions

25

Arithmetic Instructions
• Simple instructions

o add{b,w,l} source, dest dest = source + dest
o sub{b,w,l} source, dest dest = dest – source
o inc(b,w,l} dest dest = dest + 1
o dec{b,w,l} dest dest = dest – 1
o neg(b,w,l} dest dest = ^dest
o cmp{b,w,l} source1, source2 source2 – source1

• Multiply
o mul (unsigned) or imul (signed)
mull %ebx # edx, eax = eax * ebx

• Divide
o div (unsigned) or idiv (signed)
idiv %ebx # edx = edx,eax / ebx

• Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions

26

EFLAG Register & Condition Codes

C
F1P

F0A
F0Z

F
S
F

T
F

I
F

D
F

O
F

IO
P
L

N
T0R

F
V
M

A
C

V
I
F

V
I
P

I
DReserved (set to 0)

012345678910111213141516171819202131 22

Carry flag

Identification flag
Virtual interrupt pending
Virtual interrupt flag
Alignment check
Virtual 8086 mode
Resume flag
Nested task flag
I/O privilege level
Overflow flag

Interrupt enable flag
Direction flag

Trap flag
Sign flag
Zero flag
Auxiliary carry flag or adjust flag
Parity flag

27

Branch Instructions
• Conditional jump

o j{l,g,e,ne,...} target if (condition) {eip = target}

• Unconditional jump
o jmp target
o jmp *register

Comparison Signed Unsigned
= e e

ne
a
ae
b
be
c

nc

“equal”
≠ ne “not equal”
> g “greater,above”

≥ ge “...-or-equal”
< l “less,below”
≤ le “...-or-equal”

overflow/carry o
no ovf/carry no

28

Making the Computer Faster
• Memory hierarchy

o Ranging from small, fast storage to large, slow storage
o E.g., registers, caches, main memory, disk, CDROM, …

• Sophisticated logic units
o Have dedicated logic units for specialized functions
o E.g., right/left shifting, floating-point operations, graphics, network,…

• Pipelining
o Overlap the fetch-decode-execute process
o E.g., execute instruction i, while decoding i-1, and fetching i-2

• Branch prediction
o Guess which way a branch will go to avoid stalling the pipeline
o E.g., assume the “for loop” condition will be true, and keep going

• And so on… see the Computer Architecture class!

29

Memory Hierarchy

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

CD-ROM Jukebox: >1000M x1012 bytes

102 bytes

104 bytes

105 bytes

106 bytes

109 bytes

1011 bytes

Capacity Access time

30

Conclusion
• Computer architecture

o Central Processing Unit (CPU) and Random Access Memory (RAM)
o Fetch-decode-execute cycle
o Instruction set

• Assembly language
o Machine language represented with handy mnemonics
o Example of the IA-32 assembly language

• Next time
o Portions of memory: data, bss, text, stack, etc.
o Function calls, and manipulating contents of the stack

31

Instructions
Computers process information

• Input/Output (I/O)

• State (memory)

• Computation (processor)

• Instructions instruct processor to manipulate state

• Instructions instruct processor to produce I/O in the same
way

Input Output

State

Computation

Sequential Circuit!!

32

State
Typical modern machine has this architectural state:

1. Main Memory

2. Registers

3. Program Counter

Architectural – Part of the assembly programmer’s interface

(Implementation has additional microarchitectural state)

33

State – Main Memory
Main Memory (AKA: RAM – Random Access Memory)

• Data can be accessed by address (like a big array)

• Large but relatively slow

• Decent desktop machine: 1 Gigabyte, 800MHz
Address Data

0000 010110012

0002 7816

0001 F516

0003 3A16

… …
FFFF 000000002

Byte Addressable

34

State – Main Memory
Address Data

0000 010110012

0002 7816

0001 F516

0003 3A16

… …
FFFF 000000002

Address

Data

Read/Write

7816

READ

0002

Read:
1. Indicate READ
2. Give Address
3. Get Data

35

State – Main Memory
Address Data

0000 010110012

0002 7816

0001 F516

0003 3A16

… …
FFFF 000000002

Address

Data

Read/WriteWRITE

0003

1216

1216

Write:
1. Indicate WRITE
2. Give Address and Data

36

State – Registers (Register File)
Data can be accessed by register number (address)

• Small but relatively fast (typically on processor chip)

• Decent desktop machine: 8 32-bit registers, 3 GHz

Register Data in Reg
0 0000000016

2 7B2D9D0816

1 F629D9B516

3 0000000116

… …
8 DEADBEEF16

37

State – Program Counter
Program Counter (AKA: PC, Instruction Pointer, IP)

• Instructions change state, but which instruction now?

• PC holds memory address of currently executing
instruction

Address Data in Memory
0000 010110012

0002 ADDinst

0001 F516

0003 SUBTRACTinst

… …
FFFF 000000002

Program Counter

0002

38

State – Program Counter
Program Counter (AKA: PC, Instruction Pointer, IP)

• Instructions change state, but which instruction now?

• PC holds address of currently executing instruction

• PC is updated after each instruction

Address Data in Memory
0000 010110012

0002 ADDinst

0001 F516

0003 SUBTRACTinst

… …
FFFF 000000002

Program Counter

0003

39

State – Summary
Typical modern machine has this architectural state:

1. Main Memory – Big, Slow

2. Registers – Small, Fast (always on processor chip)

3. Program Counter – Address of executing instruction

Architectural – Part of the assembly programmer’s interface

(implementation has additional microarchitectural state)

40

An Aside: State and The Core Dump
• Core Dump: the state of the

machine at a given time

• Typically at program failure

• Core dump contains:
o Register Contents
o Memory Contents
o PC Value

00: 0000 0000 0000 0000 0000 0000 0000 0000

08: 0000 0000 0000 0000 0000 0000 0000 0000

10: 9222 9120 1121 A120 1121 A121 7211 0000

18: 0000 0001 0002 0003 0004 0005 0006 0007

20: 0008 0009 000A 000B 000C 000D 000E 000F

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE

.

.
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000

Main Memory

Registers

B700

2

0010

3

0401

4

0002

50

0788

1

0003

6

00A0

7

0000

B700

A

0010

B

0401

C

0002

D8

0788

9

0003

E

00A0

F

0000

PC

10

Interfaces in Computer Systems

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O

Hardware: Read and Obey Instruction Bits

Instructions
An ADD Instruction:

add r1 = r2 + r3 (assembly)

Parts of the Instruction:

• Opcode (verb) – what operation to perform

• Operands (noun) – what to operate upon

• Source Operands – where values come from

• Destination Operand – where to deposit data values

Opcode Operands

Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 15

3 2
… …
31 0

Program Counter

40

Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 15

3 2
… …
31 0

Program Counter

40

2

3

1

Instructions

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Register Data
0 0

2 1
1 3

3 2
… …
31 0

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Program Counter

40

Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 3

3 2
… …
31 0

Program Counter

44

3

Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 3

3 3
… …
31 0

Program Counter

48

3

3

3

Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 3
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 3

3 3
… …
31 0

Program Counter

52

5

5

Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 3
… …

FFFFFFFF 0

Register Data
0 0

2 5
1 3

3 3
… …
31 0

Program Counter

52

Instructions

Note:

1. Insts Executed in Order

2. Addressing Modes

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0

2 5
1 25

3 3
… …

FFFFFFF
F

0

Register Data
0 0

2 5
1 3

3 3
… …
31 0

Program Counter

52

Assembly Instructions and C
main() {

int a = 15, b = 1, c = 2;

add r1 = r2 + r3 a = b + c; /* a gets 3 */

sub r3 = r1 - r0 c = a; /* c gets 3 */

store M[r3] = r1 *(int *)c = a;

/* M[c] = a */

load r2 = M[2] b = *(int *)(2);

/* b gets M[2] */

}

52

53

Branching

Suppose we could only execute instructions in sequence.

Recall from our example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

• In a decent desktop machine, how long would the
longest program stored in main memory take?

• Assume: 1 instruction per cycle
o An instruction is encoded in 4 bytes (32 bits)

54

Therefore…
• Some instructions must execute more than once

• PC must be updated

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]
56: PC = 40

55

Unconditional Branches
• Unconditional branches always update the PC

• AKA: Jump instructions

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]
56: jump 40

• How long with the program take?

56

Conditional Branch
• Conditional Branch sometimes updates PC

• AKA: Branch, Conditional Jump

• Example
40: r1 = 10
44: r1 = r1 - 1
48: branch r1 > 0, 44 if r1 is greater than 0, PC = 44
52: halt

• How long will this program take?

57

Conditional Branch
• What does this look like in C?

• Example
10: “Hello\n” ; data in memory
36: arg1 = 10 ; argument memory address is 10
40: r1 = 10
44: r1 = r1 - 1
48: call printf ; printf(arg1)
52: branch r1 > 0, 44
56: halt

Details about red instructions/data next time…

58

Indirect Branches
• Branch address may also come from a register

• AKA: Indirect Jump

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]
56: jump r4
60: halt

?

59

Branch Summary
• Reduce, Reuse, Recycle (instructions)

• Branch instructions update state

00: 0000 0000 0000 0000 0000 0000 0000 0000

08: 0000 0000 0000 0000 0000 0000 0000 0000

10: 9222 9120 1121 A120 1121 A121 7211 0000

18: 0000 0001 0002 0003 0004 0005 0006 0007

20: 0008 0009 000A 000B 000C 000D 000E 000F

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE

.

.
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000

Main Memory

Registers

B700

2

0010

3

0401

4

0002

50

0788

1

0003

6

00A0

7

0000

B700

A

0010

B

0401

C

0002

D8

0788

9

0003

E

00A0

F

0000

PC

10

60

61

A Note on Notation…
• Assembly syntax is somewhat arbitrary

• Equivalent “Add” Instructions
o add r1, r2, r3
o add r1 = r2, r3
o r1 = r2 + r3
o add r1 = r2 + r3
o add $1, $2, $3
o …

• Equivalent “Store Word” Instructions
o sw $1, 10($2)
o M[r2 + 10] = r1
o st.w M[r2 + 10] = r1
o …

62

Specific Instance: MIPS Instruction Set
• MIPS – SGI Workstations, Nintendo, Sony…

State:

• 32-bit addresses to memory (32-bit PC)

• 32 32-bit Registers

• A “word” is 32-bits on MIPS

• Register $0 ($zero) always has the value 0

• By convention, certain registers are used for certain things
– more next time…

63

Specific Instance: MIPS Instruction Set
Some Arithmetic Instructions:

• Add:
o Assembly Format: add <dest>, <src1>, <src2>
o Example: add $1, $2, $3
o Example Meaning: r1 = r2 + r3

• Subtract:
o Same as add, except “sub” instead of “add”

64

Specific Instance: MIPS Instruction Set
Some Memory Instructions:

• Load Word:
o Assembly Format: lw <dest>, <offset immediate> (<src1>)
o Example: lw $1, 100 ($2)
o Example Meaning: r1 = M[r2 + 100]

• Store Word:
o Assembly Format: sw <src1>, <offset immediate> (<src2>)
o Example: sw $1, 100 ($2)
o Example Meaning: M[r2 + 100] = r1

65

Specific Instance: MIPS Instruction Set
Some Branch Instructions:

• Branch Equal:
o Assembly Format: beq <src1>, <src2>, <target immediate>
o Example: beq $1, $2, 100
o Example Meaning: branch r1 == r2, 100

If r1 is equal to r2, PC = 100

• Branch Not Equal: Same except beq -> bne

• Jump:
o Assembly Format: j <target immediate>
o Example: j 100
o Example Meaning: jump 100

PC = 100

66

How are MIPS Instructions Encoded?

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

67

MIPS Encodings
32-bits/Instruction

68

MIPS Add Instruction Encoding

add $17, $18, $19

0 18 19 17 0 32

add is an R inst

69

MIPS Add Instruction Encoding

sub $17, $18, $19

0 18 19 17 0 34

sub is an R inst

70

Add and Subtract
A little foreshadowing…

add

sub

71

http://www.healingwithnutrition.com/graphic/eggs.jpg

72

Memory Addressing

View memory as a single-dimensional
array

Since 1980: Elements of array are 8-bits

We say “byte addressable”

Assuming 32-bit words:

1. How are bytes laid out in word read?

2. Can a word start at any address?

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization
• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1

• 230 words with byte addresses 0, 4, 8, ... 232-4

• Words are aligned
i.e., what are the least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

74

Addressing Modes
Addressing mode Example Meaning
Register Add R4,R3 R4← R4+R3

Immediate Add R4,#3 R4 ← R4+3

Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 ← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]; R2 ← R2+d

Auto-decrement Add R1,–(R2) R2 ← R2–d; R1 ← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ← R1+Mem[100+R2+R3*d]

Hello World

The Hello World Algorithm:

1. Emit “Hello World”

2. Terminate C Program

Hello World

IA-64 Assembly Language

GNU C CompilerC Program

Hello World
IA-64 Assembly Language

78

Control
(from the back of a napkin)

The Hardware/Software Interface

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

LayoutHardware

Software

The Instruction Set Architecture
“The vocabulary of commands”

• Defined by the Architecture (x86)

• Implemented by the Machine (Pentium 4, 3.06 GHz)

• An Abstraction Layer: The Hardware/Software Interface

• Architecture has longevity over implementation

• Example:
add r1 = r2 + r3 (assembly)

001 001 010 011 (binary)

Opcode (verb) Operands (nouns)

	Computer Architecture �and Assembly Language
	Goals of Today’s Lecture
	Levels of Languages
	Why Learn Assembly Language?
	A Typical Computer
	Von Neumann Architecture
	Control Unit
	Example: Kinds of Instructions
	Size of Variables
	Four-Byte Memory Words
	IA32 General Purpose Registers
	Registers for Executing the Code
	Other Registers that you don’t much care about
	Reading IA32 Assembly Language
	Detailed Example
	Flattening Code Example
	Machine-Language Instructions
	Instruction
	How Many Instructions to Have?
	CISC vs. RISC
	Data Transfer Instructions
	Data Access Methods
	Effective Address
	Bitwise Logic Instructions
	Arithmetic Instructions
	EFLAG Register & Condition Codes
	Branch Instructions
	Making the Computer Faster
	Memory Hierarchy
	Conclusion
	Instructions
	State
	State – Main Memory
	State – Main Memory
	State – Main Memory
	State – Registers (Register File)
	State – Program Counter
	State – Program Counter
	State – Summary
	An Aside: State and The Core Dump
	Interfaces in Computer Systems
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions
	Instructions�
	Assembly Instructions and C
	Branching
	Therefore…
	Unconditional Branches
	Conditional Branch
	Conditional Branch
	Indirect Branches
	Branch Summary
	A Note on Notation…
	Specific Instance: MIPS Instruction Set
	Specific Instance: MIPS Instruction Set
	Specific Instance: MIPS Instruction Set
	Specific Instance: MIPS Instruction Set
	How are MIPS Instructions Encoded?
	MIPS Encodings�32-bits/Instruction
	MIPS Add Instruction Encoding�
	MIPS Add Instruction Encoding�
	Add and Subtract�A little foreshadowing…
	Memory Addressing�
	Memory Organization
	Addressing Modes
	Hello World�
	Hello World�
	Hello World�
	Control�(from the back of a napkin)
	The Hardware/Software Interface�
	The Instruction Set Architecture

