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Goals of Today’s Lecture
• Computer architecture
o Central processing unit (CPU)
o Fetch-decode-execute cycle
o Memory hierarchy, and other optimization

• Assembly language
o Machine vs. assembly vs. high-level languages
o Motivation for learning assembly language
o Intel Architecture (IA32) assembly language
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Levels of Languages
• Machine language
o What the computer sees and deals with
o Every command is a sequence of one or more numbers

• Assembly language
o Command numbers replaced by letter sequences that 

are easier to read
o Still have to work with the specifics of the machine itself

• High-level language
o Make programming easier by describing operations in a 

natural language
o A single command replaces a group of low-level 

assembly language commands
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Why Learn Assembly Language?
• Understand how things work underneath
o Learn the basic organization of the underlying machine
o Learn how the computer actually runs a program
o Design better computers in the future

• Write faster code (even in high-level language)
o By understanding which high-level constructs are better
o … in terms of how efficient they are at the machine level

• Some software is still written in assembly language
o Code that really needs to run quickly
o Code for embedded systems, network processors, etc.
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A Typical Computer 

CPU

ChipsetMemory
I/O bus

CPU. . .

Network

ROM
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Von Neumann Architecture
• Central Processing Unit
o Control unit

– Fetch, decode, and execute 
o Arithmetic and logic unit

– Execution of low-level operations
o General-purpose registers

– High-speed temporary storage
o Data bus

– Provide access to memory

• Memory
o Store instructions
o Store data

Random Access
Memory (RAM)

Control
Unit

ALU

CPU

Registers

Data bus
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Control Unit
• Instruction pointer
o Stores the location of the next instruction

– Address to use when reading from memory
o Changing the instruction pointer

– Increment by one to go to the next instruction
– Or, load a new value to “jump” to a new location

• Instruction decoder
o Determines what operations need to take place

– Translate the machine-language instruction 
o Control the registers, arithmetic logic unit, and memory

– E.g., control which registers are fed to the ALU
– E.g., enable the ALU to do multiplication
– E.g., read from a particular address in memory
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Example: Kinds of Instructions
• Storing values in registers

o count = 0
o n

• Arithmetic and logic operations
o Increment: count++
o Multiply: n * 3
o Divide: n/2
o Logical AND: n & 1

• Checking results of comparisons 
o while (n > 1)
o if (n & 1)

• Jumping
o To the end of the while loop (if “n > 1”)
o Back to the beginning of the loop
o To the else clause (if “n & 1” is 0)

count = 0;
while (n > 1) {

count++;
if (n & 1)
n = n*3 + 1;

else
n = n/2;

}
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Size of Variables 
• Data types in high-level languages vary in size
o Character: 1 byte
o Short, int, and long: varies, depending on the computer
o Pointers: typically 4 bytes
o Struct: arbitrary size, depending on the elements

• Implications
o Need to be able to store and manipulate in multiple sizes
o Byte (1 byte), word (2 bytes), and extended (4 bytes)
o Separate assembly-language instructions 

– e.g., addb, addw, addl
o Separate ways to access (parts of) a 4-byte register
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Four-Byte Memory Words

Memory

232-1

0

Byte order is little endian

31 08 716  15

.

.

.

24  23

Byte 4
Byte 0

Byte 5
Byte 1Byte 2

Byte 6
Byte 3
Byte 7
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IA32 General Purpose Registers

General-purpose registers

EAX
EBX
ECX
EDX
ESI
EDI

31 0 16-bit  32-bit
AX
BX
CX
DX

DI
SI

ALAH
BL
CL
DL

BH
CH
DH

8 715
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Registers for Executing the Code
• Execution control flow
o Instruction pointer (EIP)

– Address in memory of the current instruction
o Flags (EFLAGS)

– Stores the status of operations, such as comparisons
– E.g., last result was positive/negative, was zero, etc.

• Function calls (more on these later!)
o Stack register (ESP)

– Address of the top of the stack
o Base pointer (EBP)

– Address of a particular element on the stack
– Access function parameters and local variables
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Other Registers that you don’t much care about

• Segment registers
o CS, SS, DS, ES, FS, GS

• Floating Point Unit (FPU) (x87)
o Eight 80-bit registers (ST0, …, ST7)
o 16-bit control, status, tag registers
o 11-bit opcode register
o 48-bit FPU instruction pointer, data pointer registers

• MMX
o Eight 64-bit registers

• SSE and SSE2 
o Eight 128-bit registers
o 32-bit MXCRS register

• System
o I/O ports
o Control registers (CR0, …, CR4)
o Memory management registers (GDTR, IDTR, LDTR)
o Debug registers (DR0, …, DR7)
o Machine specific registers
o Machine check registers
o Performance monitor registers
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Reading IA32 Assembly Language
• Assembler directives: starting with a period (“.”)
o E.g., “.section .text” to start the text section of memory
o E.g., “.loop” for the address of an instruction

• Referring to a register: percent size (“%”)
o E.g., “%ecx” or “%eip”

• Referring to a constant: dollar sign (“$”)
o E.g., “$1” for the number 1

• Storing result: typically in the second argument
o E.g. “addl $1, %ecx” increments register ECX 
o E.g., “movl %edx, %eax” moves EDX to EAX

• Comment: pound sign (“#”)
o E.g., “# Purpose: Convert lower to upper case”
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movl %edx, %eax
andl $1, %eax
je .else

jmp .endif
.else:

.endif:
sarl $1, %edx

movl %edx, %eax
addl %eax, %edx
addl %eax, %edx
addl $1, %edx

addl $1, %ecx

.loop:
cmpl $1, %edx
jle .endloop

jmp .loop
.endloop:

movl $0, %ecx

Detailed Example

count=0;
while (n>1) {

count++;
if (n&1)
n = n*3+1;

else
n = n/2;

}

n %edx
count %ecx
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Flattening Code Example

count=0;
while (n>1) {

count++;
if (n&1)
n = n*3+1;

else
n = n/2;

}
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Machine-Language Instructions
Instructions have the form

op     source, dest “dest ← dest ⊕ source”

operation  (move, add, subtract, etc.)

first operand (and destination)

second operand

Instruction Format:
operand operandoperandopcode
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Instruction
• Opcode

o What to do

• Source operands
o Immediate (in the instruction itself)
o Register
o Memory location
o I/O port

• Destination operand
o Register
o Memory location
o I/O port

• Assembly syntax
Opcode source1, [source2,] destination
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How Many Instructions to Have?
• Need a certain minimum set of functionality

o Want to be able to represent any computation that can be expressed 
in a higher-level language

• Benefits of having many instructions
o Direct implementation of many key operations
o Represent a line of C in one (or just a few) lines of assembly

• Disadvantages of having many instructions
o Larger opcode size
o More complex logic to implement complex instructions
o Hard to write compilers to exploit all the available instructions
o Hard to optimize the implementation of the CPU
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CISC vs. RISC
Complex Instruction Set Computer

(old fashioned, 1970s style)

Examples: 

Vax (1978-90)

Motorola 68000 (1979-90)

8086/80x86/Pentium (1974-2025)

Instructions of various lengths, 
designed to economize on 
memory (size of instructions)

Reduced Instruction Set Computer

(“modern”, 1980s style)

Examples:

MIPS  (1985-?)

Sparc (1986-2006)

IBM PowerPC (1990-?)

ARM 

Instructions all the same size and 
all the same format, designed to 
economize on decoding 
complexity (and time, and power 
drain)
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Data Transfer Instructions
•mov{b,w,l} source, dest

o General move instruction

•push{w,l} source
pushl %ebx # equivalent instructions

subl $4, %esp
movl %ebx, (%esp)

•pop{w,l} dest
popl %ebx # equivalent instructions

movl (%esp), %ebx
addl $4, %esp

• Many more in Intel manual (volume 2)
o Type conversion, conditional move, exchange, compare and 

exchange, I/O port, string move, etc.

esp
esp

esp
esp
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Data Access Methods
• Immediate addressing: data stored in the instruction itself

o movl $10, %ecx

• Register addressing: data stored in a register
o movl %eax, %ecx

• Direct addressing: address stored in instruction
o movl 2000, %ecx

• Indirect addressing: address stored in a register
o movl (%eax), %ebx

• Base pointer addressing: includes an offset as well
o movl 4(%eax), %ebx

• Indexed addressing: instruction contains base address, and 
specifies an index register and a multiplier (1, 2, or 4)
o movl 2000(,%ecx,1), %ebx
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Effective Address

• Displacement movl foo, %ebx

• Base movl (%eax), %ebx

• Base + displacement movl foo(%eax), %ebx
movl 1(%eax), %ebx

• (Index * scale) + displacement movl (,%eax,4), %ebx

• Base + (index * scale) + displacement movl foo(,%eax,4), %ebx

eax
ebx
ecx
edx
esp
ebp
esi
edi

eax
ebx
ecx
edx
esp
ebp
esi
edi

+

1
2
3
4

* +

None

8-bit

16-bit

32-bit

Offset =

Base          Index      scale   displacement  
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Bitwise Logic Instructions
• Simple instructions

and{b,w,l} source, dest dest = source & dest
or{b,w,l} source, dest dest = source | dest
xor{b,w,l} source, dest dest = source ^ dest
not{b,w,l} dest dest = ^dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

• Many more in Intel Manual (volume 2)
o Logic shift
o Rotation shift
o Bit scan 
o Bit test
o Byte set on conditions
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Arithmetic Instructions
• Simple instructions

o add{b,w,l} source, dest dest = source + dest
o sub{b,w,l} source, dest dest = dest – source
o inc(b,w,l} dest dest = dest + 1
o dec{b,w,l} dest dest = dest – 1
o neg(b,w,l} dest dest = ^dest
o cmp{b,w,l} source1, source2 source2 – source1

• Multiply
o mul (unsigned) or imul (signed)
mull %ebx # edx, eax = eax * ebx

• Divide
o div (unsigned) or idiv (signed)
idiv %ebx # edx = edx,eax / ebx

• Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions
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EFLAG Register &   Condition Codes

C
F1P

F0A
F0Z

F
S
F

T
F

I
F

D
F

O
F

IO
P
L

N
T0R

F
V
M

A
C

V
I
F

V
I
P

I
DReserved (set to 0)

012345678910111213141516171819202131                                                 22

Carry flag

Identification flag
Virtual interrupt pending
Virtual interrupt flag
Alignment check
Virtual 8086 mode
Resume flag
Nested task flag
I/O privilege level
Overflow flag

Interrupt enable flag
Direction flag

Trap flag
Sign flag
Zero flag
Auxiliary carry flag or adjust flag
Parity flag
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Branch Instructions
• Conditional jump

o j{l,g,e,ne,...} target if (condition) {eip = target}

• Unconditional jump
o jmp target
o jmp *register

Comparison Signed Unsigned
= e e

ne
a
ae
b
be
c

nc

“equal”
≠ ne “not equal”
> g “greater,above”

≥ ge “...-or-equal”
< l “less,below”
≤ le “...-or-equal”

overflow/carry o
no ovf/carry no
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Making the Computer Faster
• Memory hierarchy

o Ranging from small, fast storage to large, slow storage
o E.g., registers, caches, main memory, disk, CDROM, …

• Sophisticated logic units
o Have dedicated logic units for specialized functions
o E.g., right/left shifting, floating-point operations, graphics, network,…

• Pipelining
o Overlap the fetch-decode-execute process
o E.g., execute instruction i, while decoding i-1, and fetching i-2

• Branch prediction
o Guess which way a branch will go to avoid stalling the pipeline
o E.g., assume the “for loop” condition will be true, and keep going

• And so on… see the Computer Architecture class!
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Memory Hierarchy

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

CD-ROM Jukebox: >1000M x1012 bytes

102 bytes

104 bytes

105 bytes

106 bytes

109 bytes

1011 bytes

Capacity Access time
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Conclusion
• Computer architecture

o Central Processing Unit (CPU) and Random Access Memory (RAM)
o Fetch-decode-execute cycle
o Instruction set

• Assembly language
o Machine language represented with handy mnemonics
o Example of the IA-32 assembly language

• Next time
o Portions of memory: data, bss, text, stack, etc.
o Function calls, and manipulating contents of the stack
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Instructions
Computers process information

• Input/Output (I/O)

• State (memory)

• Computation (processor)

• Instructions instruct processor to manipulate state

• Instructions instruct processor to produce I/O in the same 
way

Input Output

State

Computation

Sequential Circuit!!
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State
Typical modern machine has this architectural state:

1. Main Memory

2. Registers

3. Program Counter

Architectural – Part of the assembly programmer’s interface

(Implementation has additional microarchitectural state)
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State – Main Memory
Main Memory (AKA: RAM – Random Access Memory)

• Data can be accessed by address (like a big array)

• Large but relatively slow

• Decent desktop machine: 1 Gigabyte, 800MHz
Address Data

0000 010110012

0002 7816

0001 F516

0003 3A16

… …
FFFF 000000002

Byte Addressable
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State – Main Memory
Address Data

0000 010110012

0002 7816

0001 F516

0003 3A16

… …
FFFF 000000002

Address

Data

Read/Write

7816

READ

0002

Read:
1. Indicate READ
2. Give Address
3. Get Data
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State – Main Memory
Address Data

0000 010110012

0002 7816

0001 F516

0003 3A16

… …
FFFF 000000002

Address

Data

Read/WriteWRITE

0003

1216

1216

Write:
1. Indicate WRITE
2. Give Address and Data
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State – Registers (Register File)
Data can be accessed by register number (address)

• Small but relatively fast (typically on processor chip)

• Decent desktop machine: 8 32-bit registers, 3 GHz

Register Data in Reg
0 0000000016

2 7B2D9D0816

1 F629D9B516

3 0000000116

… …
8 DEADBEEF16
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State – Program Counter
Program Counter (AKA: PC, Instruction Pointer, IP)

• Instructions change state, but which instruction now?

• PC holds memory address of currently executing 
instruction

Address Data in Memory
0000 010110012

0002 ADDinst

0001 F516

0003 SUBTRACTinst

… …
FFFF 000000002

Program Counter

0002
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State – Program Counter
Program Counter (AKA: PC, Instruction Pointer, IP)

• Instructions change state, but which instruction now?

• PC holds address of currently executing instruction

• PC is updated after each instruction

Address Data in Memory
0000 010110012

0002 ADDinst

0001 F516

0003 SUBTRACTinst

… …
FFFF 000000002

Program Counter

0003
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State – Summary
Typical modern machine has this architectural state:

1. Main Memory – Big, Slow

2. Registers – Small, Fast (always on processor chip)

3. Program Counter – Address of executing instruction

Architectural – Part of the assembly programmer’s interface

(implementation has additional microarchitectural state)
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An Aside: State and The Core Dump
• Core Dump: the state of the 

machine at a given time

• Typically at program failure 

• Core dump contains:
o Register Contents
o Memory Contents
o PC Value

00: 0000 0000 0000 0000 0000 0000 0000 0000

08: 0000 0000 0000 0000 0000 0000 0000 0000

10: 9222 9120 1121 A120 1121 A121 7211 0000

18: 0000 0001 0002 0003 0004 0005 0006 0007

20: 0008 0009 000A 000B 000C 000D 000E 000F

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE

.

.
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000

Main Memory

Registers

B700

2

0010

3

0401

4

0002

50

0788

1

0003

6

00A0

7

0000

B700

A

0010

B

0401

C

0002

D8

0788

9

0003

E

00A0

F

0000

PC

10



Interfaces in Computer Systems

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O

Hardware: Read and Obey Instruction Bits



Instructions
An ADD Instruction:

add r1 = r2 + r3    (assembly)

Parts of the Instruction:

• Opcode (verb) – what operation to perform

• Operands (noun) – what to operate upon

• Source Operands – where values come from

• Destination Operand – where to deposit data values

Opcode Operands 



Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 15

3 2
… …
31 0

Program Counter

40



Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 15

3 2
… …
31 0

Program Counter

40

2

3

1



Instructions

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Register Data
0 0

2 1
1 3

3 2
… …
31 0

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Program Counter

40



Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 3

3 2
… …
31 0

Program Counter

44

3



Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 9
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 3

3 3
… …
31 0

Program Counter

48

3

3

3



Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 3
… …

FFFFFFFF 0

Register Data
0 0

2 1
1 3

3 3
… …
31 0

Program Counter

52

5       

5



Instructions
Instructions:

“The vocabulary of commands”

Specify how to operate on state

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 3
… …

FFFFFFFF 0

Register Data
0 0

2 5
1 3

3 3
… …
31 0

Program Counter

52



Instructions

Note:

1. Insts Executed in Order

2. Addressing Modes

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

Address Data
0 0

2 5
1 25

3 3
… …

FFFFFFF
F

0

Register Data
0 0

2 5
1 3

3 3
… …
31 0

Program Counter

52



Assembly Instructions and C
main() {

int a = 15, b = 1, c = 2;

add r1 = r2 + r3       a = b + c;  /* a gets 3 */

sub r3 = r1 - r0 c = a;  /* c gets 3 */ 

store M[ r3 ] = r1     *(int *)c = a; 

/* M[c] = a */

load r2 = M[ 2 ]       b = *(int *)(2); 

/* b gets M[2] */

}
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Branching

Suppose we could only execute instructions in sequence.

Recall from our example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]

• In a decent desktop machine, how long would the 
longest program stored in main memory take?

• Assume: 1 instruction per cycle
o An instruction is encoded in 4 bytes (32 bits)
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Therefore…
• Some instructions must execute more than once

• PC must be updated 

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]
56: PC = 40
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Unconditional Branches
• Unconditional branches always update the PC

• AKA: Jump instructions

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]
56: jump 40

• How long with the program take?
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Conditional Branch
• Conditional Branch sometimes updates PC

• AKA: Branch, Conditional Jump

• Example
40: r1 = 10
44: r1 = r1 - 1
48: branch r1 > 0, 44          if r1 is greater than 0, PC = 44
52: halt

• How long will this program take?
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Conditional Branch
• What does this look like in C?

• Example
10: “Hello\n” ; data in memory
36: arg1 = 10         ; argument memory address is 10
40: r1 = 10
44: r1 = r1 - 1
48: call printf ; printf(arg1)
52: branch r1 > 0, 44          
56: halt

Details about red instructions/data next time…
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Indirect Branches
• Branch address may also come from a register

• AKA: Indirect Jump

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[ r3 ] = r1
52: load r2 = M[ 2 ]
56: jump r4
60: halt

?
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Branch Summary
• Reduce, Reuse, Recycle (instructions)

• Branch instructions update state

00: 0000 0000 0000 0000 0000 0000 0000 0000

08: 0000 0000 0000 0000 0000 0000 0000 0000

10: 9222 9120 1121 A120 1121 A121 7211 0000

18: 0000 0001 0002 0003 0004 0005 0006 0007

20: 0008 0009 000A 000B 000C 000D 000E 000F

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE

.

.
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000

Main Memory

Registers

B700

2

0010

3

0401

4

0002

50

0788

1

0003

6

00A0

7

0000

B700

A

0010

B

0401

C

0002

D8

0788

9

0003

E

00A0

F

0000

PC

10



60
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A Note on Notation…
• Assembly syntax is somewhat arbitrary

• Equivalent “Add” Instructions
o add r1, r2, r3
o add r1 = r2, r3
o r1 = r2 + r3
o add r1 = r2 + r3
o add $1, $2, $3
o …

• Equivalent “Store Word” Instructions
o sw $1, 10($2)
o M[r2 + 10] = r1
o st.w M[r2 + 10] = r1
o …
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Specific Instance: MIPS Instruction Set 
• MIPS – SGI Workstations, Nintendo, Sony…

State:

• 32-bit addresses to memory (32-bit PC) 

• 32 32-bit Registers

• A “word” is 32-bits on MIPS

• Register $0 ($zero) always has the value 0

• By convention, certain registers are used for certain things 
– more next time…
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Specific Instance: MIPS Instruction Set 
Some Arithmetic Instructions:

• Add:
o Assembly Format: add <dest>, <src1>, <src2>
o Example: add $1, $2, $3
o Example Meaning: r1 = r2 + r3

• Subtract:
o Same as add, except “sub” instead of “add”
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Specific Instance: MIPS Instruction Set 
Some Memory Instructions:

• Load Word:
o Assembly Format: lw <dest>, <offset immediate> (<src1>)
o Example: lw $1, 100 ($2) 
o Example Meaning: r1 = M[r2 + 100] 

• Store Word:
o Assembly Format: sw <src1>, <offset immediate> (<src2>)
o Example: sw $1, 100 ($2) 
o Example Meaning: M[r2 + 100] = r1
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Specific Instance: MIPS Instruction Set 
Some Branch Instructions:

• Branch Equal:
o Assembly Format: beq <src1>, <src2>, <target immediate> 
o Example: beq $1, $2, 100 
o Example Meaning: branch r1 == r2, 100

If r1 is equal to r2, PC = 100

• Branch Not Equal: Same except beq -> bne

• Jump:
o Assembly Format: j <target immediate>
o Example: j 100 
o Example Meaning: jump 100

PC = 100
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How are MIPS Instructions Encoded?

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout
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MIPS Encodings
32-bits/Instruction
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MIPS Add Instruction Encoding

add $17, $18, $19

0              18             19            17              0  32

add is an R inst
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MIPS Add Instruction Encoding

sub $17, $18, $19

0              18             19            17              0  34

sub is an R inst
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Add and Subtract
A little foreshadowing…

add

sub



71

http://www.healingwithnutrition.com/graphic/eggs.jpg
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Memory Addressing

View memory as a single-dimensional 
array

Since 1980: Elements of array are 8-bits

We say “byte addressable”

Assuming 32-bit words:

1. How are bytes laid out in word read?

2. Can a word start at any address?

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data



Memory Organization
• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1

• 230 words with byte addresses 0, 4, 8, ... 232-4

• Words are aligned
i.e., what are the  least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data
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Addressing Modes
Addressing mode Example Meaning
Register Add R4,R3 R4← R4+R3

Immediate Add R4,#3 R4 ← R4+3

Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 ← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]; R2 ← R2+d

Auto-decrement Add R1,–(R2) R2 ← R2–d; R1 ← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ← R1+Mem[100+R2+R3*d]



Hello World

The Hello World Algorithm:

1. Emit “Hello World”

2. Terminate C Program



Hello World

IA-64 Assembly Language

GNU C CompilerC Program



Hello World
IA-64 Assembly Language



78

Control
(from the back of a napkin)
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The Instruction Set Architecture
“The vocabulary of commands”

• Defined by the Architecture (x86)

• Implemented by the Machine (Pentium 4, 3.06 GHz)

• An Abstraction Layer: The Hardware/Software Interface

• Architecture has longevity over implementation

• Example:
add r1 = r2 + r3    (assembly)

001 001 010 011    (binary)

Opcode (verb) Operands (nouns)
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