
The Goldberg–Rao Algorithm
for the Maximum Flow Problem

COS 528 class notes – October 18, 2006

Scribe: Dávid Papp

Main idea: use of the blocking flow paradigm to achieve essentially O(min{m2/3, n1/2}·
m) running time (with some additional logarithmic factors) not only for unit capacity sim-
ple networks (for which Dinitz’s algorithm achieves precisely this bound), but for general
networks. The improvement is achieved by considering a carefully selected binary length
function. The running time we prove is precisely O(min{m2/3, n1/2}·m log n log nU) (where
U is the largest arc capacity in the network), better analysis and more advanced data
structures yield O(min{m2/3, n1/2} ·m log n2

m log U).

1 Preliminaries

We are using the following notation: the network is a directed graph G = (V,E) with a
source node s and a sink node t. The capacity u(a) of every arc a is an integer between 1
and U . The network has n nodes and m arcs; to simplify notation we define the shorthand
Λ := min{m2/3, n1/2}.

There is a binary length assigned to every arc. A function d : V → Z+ is a distance
labeling with respect to the length function l if d(t) = 0 and every (v, w) ∈ E satisfies
d(v) ≤ d(w) + l(v, w). If for a residual arc this is satisfied with equality, that is, d(v) =
d(w) + l(v, w), then the residual arc (v, w) is called admissible. (This is equivalent to
saying that d(v) > d(w) or d(v) = d(w) and l(v, w) = 0, because the length function
is binary.) We are going to augment flows by finding blocking flows in the network of
admissible arcs with respect to the length function l and distance labels d, denoted by
A(f, l, d), where f is the current flow.

In accordance with the original blocking flow idea, in order to get a good running time
bound, we need to ensure that the algorithm terminates after not too many augmentations
by showing that every iteration increases the distance of the source and the sink. This
is more difficult with a binary length function than with the usual unit length function,
due to the presence of zero length arcs. To overcome this difficulty, two modifications are
introduced.

First, the algorithm contracts the strongly connected components of the subnetwork
formed by zero-length arcs. To make sure that the flow that is directed through a node
corresponding to such a contracted component can be routed through the restored com-
ponent as well, the algorithm bounds from above the size of an augmenting flow by some
value ∆, and bounds from below the capacity of zero length arcs. Consequently the length
function l̄, which determines the admissible arcs and the corresponding distance labels, dl̄,
will have to be updated after every augmentation.

The second introduced modification is a necessary consequence of the previous one: if
the augmenting flow has a bounded value, it is possible that we do not find a blocking flow

1



of suitable value. Then we cannot guarantee the increase of the distance of s and t, and
hence ∆ has to be chosen in a way which ensures that the number of such augmentations
is small.

The final bit of the algorithm is a stopping condition: we iteratively increment the flow
until some upper bound F of the difference of the maximal and the current flow decreases
below 1. By the integrality of the capacities this implies that the current flow is maximal.
Initially, for the zero flow a trivial estimate is F = nU .

The skeleton of the Goldberg–Rao algorithm now can be described as follows:

while F ≥ 1 do
update the parameter ∆, the length function l̄, and distance labels dl̄;
contract the strong components of the network formed by the zero length arcs;
determine the network of admissible arcs, A(f, l̄, dl̄);
find a flow in A(f, l̄, dl̄) which is either blocking or has a value ∆;
augment the current flow by the flow found in the previous step;
update F ;

endwhile

In the following we discuss how to set the parameters l̄ and ∆, and how to maintain
F in order to ensure the desired running time.

2 Estimating the residual flow

The residual capacity uf (S, T ) of any s-t cut (S, T ) can serve as an upper bound on the
residual flow (the maximal flow in the residual network corresponding to the current flow).
One way to obtain such a bound fast is to consider the canonical cuts only, ie. cuts of
the form (Sk, Tk), where Sk := {v ∈ V | d(v) ≥ k}, Tk := V \ Sk.

Lemma. The minimum capacity canonical cut can be found in O(m) time.

Proof. Since every arc has length at most one, every arc may cross at most one canonical
cut. We can use this fact to compute the capacities of the canonical cuts in the following
way. Initialize every uf (Sk, Tk) to be zero. Then for every arc (v, w) if d(v) > d(w),
then increase uf (Sd(v), Td(v)) (the capacity of the only canonical cut crossed by (u, v)) by
uf (v, w). Finally, find the minimum among the numbers uf (Sk, Tk), and set F to this
value. Both the correctness and the linear running time is immediate.

To obtain a running time bound we will make sure that F will decrease fast enough. A
sequence of operations constitutes a phase of the algorithm if it decreases F by a factor of
two. To simplify the analysis we do not change F in every iteration. Instead, we change
F to the residual capacity of the minimum canonical cut only when the latter decreases
to F/2 or below, marking the end of the phase. Clearly, after at most log nU phases the
algorithm terminates.

3 Binary blocking flow algorithm

The blocking flow algorithm used in the Goldberg–Rao algorithm is a variant of the orig-
inal blocking flow algorithm. Changes are necessary to ensure that after a blocking flow
iteration either the distance of s and t strictly increases (in spite of the zero length arcs),
or the current flow is increased significantly enough.

2



As we have mentioned in the introduction, we will have to bound how much we can
increment the current flow in one iteration, and we denoted this bound by ∆. To make
the initially claimed running time possible, the number of updates by non-blocking flows
cannot exceed Λ per phase, hence we can set ∆ = dF/Λe.

The binary length function for a phase is based on the following definition:

l(v, w) =

{
0 uf (v, w) ≥ 3∆
1 otherwise

,

that is, arcs of very large capacity have zero length. To ensure that the distance of s and
t increases after augmenting along a blocking flow we need to modify this in the following
way. Let us call an arc (v, w) special if it satisfies the following:

• 2∆ ≤ uf (v, w) < 3∆,

• d(v) = d(w),

• uf (w, v) ≥ 3∆,

and let us define the binary length function we are going to use as follows:

l̄(v, w) =

{
0 uf (v, w) ≥ 3∆ or (v, w) is special
1 otherwise

.

Note that the definition of special arcs does not change the distances: dl = dl̄.

We can now give the details on how we handle the contraction of zero length arcs.

Lemma. Suppose that we have found a flow of value at most ∆ in the contracted network.
Then we can correct this to a flow of the same value in the original network in O(m) time.

Proof. Choose an arbitrary vertex in each component as its root. Form an in-tree
and an out-tree of each component rooted at their respective roots. Route all the positive
balances towards the root using the in-tree arcs, and then route the resulting flow excess
from the root to the negative balances using the out-tree arcs. During this process we do
not violate any arc capacity constraints, since each zero length arc has capacity at least
2∆, and at most ∆ flow is routed both to and from the root using that arc. The process
clearly takes linear time in the number of zero length arcs.

The following theorem is crucial to obtain the desired running time.

Theorem. Let f̄ be a flow in A(f, l̄, dl), let f ′ = f + f̄ be the augmented flow, and let l′

be the length function corresponding to f ′. Then

1. dl is a distance labeling with respect to l′,

2. dl′(s) ≥ dl(s),

3. if f̄ is a blocking flow, then dl(s) < dl′(s),

Remark. Notice that in the theorem l̄ is the modified distance function, which takes special
edges into consideration, while l′ is the “basic” length function, which assigns an arc length
of 1 to special arcs. In the original paper Theorem 4.3 contains a few typos, which confuse
the different length functions, making both the theorem and the proof incorrect.

3



Proof of Theorem.

1. By definition of the distance labeling, dl(v) ≤ l̄(v, w)+dl(w) is given, and we need to
show dl(v) ≤ l′(v, w) + dl(w). This is trivial if dl(v) ≤ dl(w). If dl(v) > dl(w), which
is the same as saying that dl̄(v) > dl̄(w) (recall that the two distance functions are
the same), then (w, v) is not admissible with respect to l̄. Consequently uf ′(v, w) ≤
uf (v, w), which implies l′(v, w) ≥ l̄(v, w). The statement then follows.

2. We prove that any distance labeling d is a lower bound on the actual shortest path
distances dl from the sink. This, together with the previous part of the theorem,
implies our claim.

Suppose otherwise, ie. let d(v) > dl(v) for some node v, and let w be the last node
on a shortest v–t path Γ which satisfies d(w) > dl(w), and let x be the node that
follows w on Γ. (It may be that w = v, but certainly not w = t, and hence x is
well-defined.) Then dl(w) < d(w) ≤ l(w, x) + d(x) ≤ l(w, x) + dl(x), and hence the
v–w subpath of Γ concatenated with the the shortest w–t path is shorter than Γ,
contradicting to the selection of Γ.

3. By the first part of the theorem, c(v, w) := dl(w) − dl(v) + l′(v, w) ≥ 0. Summing
these up along an s–t path Γ in Gf ′ (the residual graph corresponding to f ′), the dl

terms telescope, and l′(Γ) = dl(s) + c(Γ), where l′(Γ) and c(Γ) are shorthands for
summation of l′ and c over the arcs of the path. Consequently it is enough to show
that along every s–t path Γ in Gf ′ there is an arc (v, w) satisfying c(v, w) > 0.

Since f̄ is blocking in A(f, l̄, dl), Γ must contain an arc (v, w) which is not in
A(f, l̄, dl). Then dl(v) ≤ dl(w), either because (v, w) is in Gf , and dl(v) > dl(w)
would mean that we have to include (v, w) to A(f, l̄, dl), or because (v, w) is not
in Gf , but it appears in Gf ′ , which means that (w, v) is in A(f, l̄, dl), implying
d(w) ≥ d(v).

Suppose now by contradiction that c(v, w) = 0. Then dl(v) = dl(w) and l′(v, w) = 0.
The fact that (v, w) is not in A(f, l̄, dl) implies that either (v, w) is not in Gf (in
which case we already showed that (w, v) is in A(f, l̄, dl)), or (v, w) is in Gf , and then
l(v, w) = 1. In the latter case, 1 = l(v, w) > l′(v, w) = 0 implies that the reverse arc,
(w, v), is in A(f, l̄, dl).

We concluded that in any case, the arc (w, v) is included in A(f, l̄, dl). But since
dl(w) = dl(v), this can happen only if l(w, v) = 0. This means that during the
augmentation we pushed flow (of value at most ∆) through (w, v), which already
satisfied uf (w, v) ≥ 3∆, and this increased the residual capacity of (v, w) to at least
3∆. (Because l′(u, w) = 0.) So uf (v, w) ≥ 2∆, and this together with uf (w, v) ≥ 3∆
and d(v) = d(w) shows that (v, w) was a special arc before the augmentation.

We conclude that (v, w) satisfies both dl̄(v) = dl̄(w) (from dl(v) = dl(w)) and
l̄(v, w) = 0, and hence (v, w) is in A(f, l̄, dl), a contradiction.

4 Time bounds

4.1 Time bounds on the blocking flow algorithm

Only one thing is missing to complete the proof of the claimed running time: we have to
show that the number of augmentations where we augment along a blocking flow is also

4



O(Λ) per phase, just like the number of augmentations by a flow of value ∆. (The latter
is immediate, ∆ is defined to satisfy this.) It is easy to see that the following is true.

Lemma. For a binary length function dl the capacity of the minimum capacity canonical
cut, (S̄, T̄ ) satisfies

uf (S̄, T̄ ) ≤ mM

dl(s)
,

where M is the maximum capacity of a length one arc.

Proof. Since every arc has length at most one, each crosses at most one of the canonical
cuts. The total capacity of arcs is at most mM , and there are dl(s) canonical cuts, so the
minimum capacity canonical cut has capacity at most mM/dl(s).

For dense graphs the following lemma gives a better bound.

Lemma. With the notations of the previous lemma,

uf (S̄, T̄ ) ≤
(

2n

dl(s)

)2

M.

Proof. Let Vk := {v ∈ V | d(v) = k}. Similarly to the previous proof, it is enough to show
that there is a k such that both Vk and Vk+1 have at most 2n/dl(s) elements. But this
follows from the pigeonhole-principle:

∑dl(s)
k=0 |Vk| = n, hence Vk ≤ 2n/dl(s) for at least

ddl(s)/2e+ 1 values of k, so there are two consecutive k’s with this property.

Using that during a phase of the Goldberg–Rao algorithm M ≤ 3∆ by definition, we
obtain that

Corollary. During a phase of a binary blocking flow algorithm there are at most O(Λ)
blocking flow augmentations.

Proof. Suppose Λ = m1/2. Every blocking flow augmentation increases dl(s) by at least
one, so after 6 dΛe such update steps dl(s) ≥ 6m1/2, and

uf (S̄, T̄ ) ≤ mM

dl(s)
≤ 3m

dl(s)
∆ ≤ 3m

6m1/2

F

m1/2
=

F

2
,

thus after this many steps the phase terminates, regardless of the augmentations by flows
of value ∆. The case Λ = n2/3 is similar, 5 dΛe augmentations are enough to terminate
the phase.

4.2 Bound on the running time of the Goldberg–Rao algorithm

Theorem. The maximum flow problem can be solved in O(Λm log(n2/m) log nU) time by
the Goldberg–Rao algorithm.

Proof. We have seen that the number of phases is O(log nU). In every phase there are two
kinds of augmentations: along blocking flows, and along flows of value ∆. We have proven
that the number of both is O(Λ). The bottleneck in one iteration is finding a blocking flow
or a flow of value ∆. This is of the same complexity as finding a blocking flow, which is
O(mn) with naive implementation, O(m log n) using dynamic trees, and O(m log(n2/m))
using size-bounded dynamic trees. (Every other step is O(m).) Multiplying these results
in the claim.

5


