
1

Surface Registration

Thomas Funkhouser
COS 526, Fall 2006

Goal

• Establish 1 to 1 mapping between points on one
3D surface and corresponding points on a
different surface

Praun

Motivation - Matching

• Determine geometric similarity of surfaces

Motivation - Matching

• Determine geometric similarity of surfaces

D(A,B) = � �FeatureShape + � �SpatialConsistency
Correspondences Correspondence

Pairs

Points

A B

Features

Motivation – Common parameterization

• Registration provides consistent parameterization
� Allows for basic operations like matching, mean,

signal processing, etc.

...+(_1n + +) =

Praun

Motivation - Morphing

• Smoothly transition from one surface to another
� When registered, simply use

linear combinations of vertices

Allen03

2

Motivation – Attribute Transfer

• Copy attributes from one surface to another
� Texture transfer (below)
� Deformation weight transfer
� Segmentation transfer

Praun

Motivation – Attribute Transfer

• Copy attributes from one surface to another
� Texture transfer
� Deformation weight transfer (below)
� Segmentation transfer

Allen03

Motivation – Attribute Transfer

• Copy attributes from one surface to another
� Texture transfer
� Deformation weight transfer
� Segmentation transfer (below)

Motivation –Scanning

• Combine multiple scans to form complete surface
� Must align scans from different views

Rusinkiewicz

Motivation – Hole Filling

• Use surface of one model to fill holes of another
� e.g., to fix surfaces captured with range scanners

Registration Goal

• Find minimal dissimilarity measure between
surfaces over class of possible transformations

Praun

3

Registration Methods

• Underlying issues:
� Transformation type
� Surface representation
� Dissimilarity measure
� Algorithmic strategy

Registration Methods - Part 1

• Transformation Type
� Rigid: mutual distances of points within a model are

conserved during transformation

R is a rotation matrix and t is a translation vector

� Non-rigid: account for surface deformations
in the transformation
• e.g., Affine transformation
• e.g., Thin plate spline

ABAABB txRx +=

Registration Methods - Part 2

• Surface Representation
� Surface description

• Points, mesh, splines, etc.
� Surface features

• Curvature extrema, saddle points, ridges, etc.
� Shape descriptors

• Harmonic shape descriptors, spin images

Registration Methods - Part 3

• Dissimilarity measure
� Distance

• Distances between corresponding points
after alignment

� Deformation
• Amount of deformation implied

by alignment

Registration Methods - Part 4

• Algorithmic strategy
� Optimization

• Iterative methods
• Simulated annealing

� Voting
• Pose clustering
• Geometric Hashing
• Generalized Hough Transform

Example – Registering Human Bodies

• Algorithm Input
� Set of human range images
� Set of colored feature markers

• Algorithm Goal
� Develop correspondence from template to target
� Compute affine transform for each vertex
� Minimize error function

Allen et al.
The Space of Human Body Shapes
Siggraph 2003

4

Optimization Variables

• Algorithm viewed as optimization problem
� Given an initial template surface with vertices vi

� Corresponding affine transformation matrices Ti

� Current state is Ti vi for all i (see diagram)
� Find values of Ti to minimize objective function
� Attempts to find a “good fit” (blue) of template (cyan) to

target (red)

Objective Function

• Objective Function has three weighted terms
� Data error
� Smoothness error
� Marker error

• Will use different weights in each phase of
process
� Multistep / Multi-resolution fitting process

Objective Function – Marker Error

• Measures distance between pre-labeled markers
� Correspondences set up beforehand

Objective Function – Data Error

• Data error term requires current match
to be close to target
� Uses distance from each transformed vertex

to the target surface
� Weighted by confidence measure (from scanning)
� Hole regions have weight = 0
� Sums total error

• Distance function
� Uses transformed template vertex
� Takes minimum distance to “compatible” vertices in

target

Objective Function – Smoothness

• Measures smoothness of deformation
applied to template
� E_s measures change in T_I between adjacent vertices
� Encourages similarly-shaped features to be mapped to

each other

� Uses Frobenius norm (vector L2 norm)

Algorithm Procedure
• Minimize error function using L-BFGS-B algorithm

� Quasi-Newton method with limited memory usage

• Make four passes over data (2 low res, 2 high res)
� Fit markers (low res, α = 0, β = 1, γ = 10)

� Refit using data term (low res, α = 1, β = 1, γ = 10)

� Repeat in high resolution (hi res, α = 1, β = 1, γ = 10)

� Refit using predominantly data term (hi res, α = 10, β = 1, γ = 1)

5

Example – Aligning Brains

• Algorithm Input
� Set of human brain surfaces
� Prelabeled reference brain mesh (low resolution)

• Algorithm Goal
� Correspondence from template to target
� Identify particular features in the brain (gyri, sulci)
� Minimize error function

Transformation types

• In brains, we see homothetic deformation
(local uniform stretch) when aligning features

Objective Function
• Minimizes error between vertex and feature point

� Euclidean distance measure

� Surface Normal Match

� Feature Match

Example – Aligning Point Sets

G1 G2
a

f

e

d

c

b
1 2

6 5

4

3

Consider rigid transformations

Association Graph

G1 G2

Represent both points sets as complete graphs (G1 and G2).
(edges connect all pairs of vertices within each point set)

a

f

e

d

c

b
1 2

6 5

4

3

Association Graph

G1 Association Graph G2

Create vertices in the association graph for all
compatible pairs of vertices in the original graphs.
This can lead to a large number of vertices.

a

f

e

d

c

b
1 2

6 5

4

3

6

Association Graph

G1 Association Graph G2

Create vertices in the association graph for all
compatible pairs of vertices in the original graphs.
Compatibility could refer to chemical properties.

f

e

d

c

b
1 2

6 5

4

3

a a4 a5
c4

c5

b2
b3

d2d3
e1

e6

f1

f6

Association Graph

G1 Association Graph G2

Create edges between (uv) and (wx) if the edges
between (u) and (w) as well as between (v) and (x)
match.

f

e

d

c

b
1 2

6 5

4

3

a a4 a5
c4

c5

b2
b3

d2d3
e1

e6

f1

f6

Association Graph

G1 Association Graph G2

Create edges between (uv) and (wx) if the edges
between (u) and (w) as well as between (v) and (x)
match.
For this example, edge length is the only consideration

f

e

d

c

b
1 2

6 5

4

3

a a4 a5
c4

c5

b2
b3

d2d3
e1

e6

f1

f6

Association Graph

G1 Association Graph G2

Create edges between (uv) and (wx) if the edges
between (u) and (w) as well as between (v) and (x)
match.
For this example, edge length is the only consideration

f

e

d

c

b
1 2

6 5

4

3

a a4 a5
c4

c5

b2
b3

d2d3
e1

e6

f1

f6

Association Graph

G1 Association Graph G2

Create edges between (uv) and (wx) if the edges
between (u) and (w) as well as between (v) and (x)
match.
For this example, edge length is the only consideration

f

e

d

c

b
1 2

6 5

4

3

a a4 a5
c4

c5

b2
b3

d2d3
e1

e6

f1

f6

Association Graph

G1 Association Graph G2

The the largest set of corresponding nodes in the same
configuration is the maximal clique in the association graph
(i.e., the largest subset of the association graph for which all
nodes are connected to one another).

f

e

d

c

b
1 2

6 5

4

3

a a4 a5
c4

c5

b2
b3

d2d3
e1

e6

f1

f6

7

Association Graph

• Computational complexity:
� O(2n) for n points
� NP-complete

Association Graph

Find the Maximal Clique{
return Cliques(empty, all nodes)

}

Cliques(X, Y){
if (no node in Y-X is connected to all of X){

return X;
}else{

y = node in Y connected to all of X;
return Largest(Cliques(X union y, Y},

Cliques{X, Y-y});
}

}

a4 a5
c4

c5

b2 b3
d2d3

e1

e6

f1

f6

[Schmitt02, Brown82]

Iterative Closest Points (ICP)

• Assume closest points correspond
� Avoid finding one-to-one correspondences

• Rigid body transformations

• Greedy optimization procedure
� Start with rough guess for alignment
� Iteratively refine transform

[Besl92]

Iterative Closest Point

• Given two point sets

A B

[Besl92]

Iterative Closest Point

• Given two point sets and an initial guess for the
transformation that aligns them

[Besl92]

Iterative Closest Point

• Assume closest points correspond

[Besl92]

Iterative Closest Point

• Assume closest points correspond: A→B

Ai Bi

[Besl92]

8

Iterative Closest Point

• Assume closest points correspond: A→B and
B→A

Ai Bi

[Besl92]

Iterative Closest Point

• Rejecting outliers

Outlier

[Besl92]

Iterative Closest Point

• Find the transformation that optimally aligns
proposed correspondences (superposition)

��
∈∈

−+−=
BB

i
AA

i

ii

ABBABAd
22),(

[Besl92]

Iterative Closest Point

• Iterate until convergence

1.1. Select source points (from one or both surfaces)Select source points (from one or both surfaces)
2.2. Match to points in the other moleculeMatch to points in the other molecule
3.3. Weight the correspondencesWeight the correspondences
4.4. Reject outlier point pairsReject outlier point pairs
5.5. Compute an error metric for the current transformCompute an error metric for the current transform
6.6. Minimize the error metric w.r.t. transformationMinimize the error metric w.r.t. transformation

Slide courtesy of Szymon Rusinkiewicz

Computational complexity
• O(k * nlogn) for n points per set and k iterations

§ k iterations * O(n) points * O(logn) to find closest point

ICP – Aligning Surfaces (Scans)

• Start with manual initial alignment

Slide courtesy of Szymon Rusinkiewicz

ICP - Aligning Surfaces (Scans)

• Improve alignment using ICP

Slide courtesy of Szymon Rusinkiewicz

9

ICP - Aligning Surfaces (Scans)

• Assume closest points correspond,
compute the best transform…

Slide courtesy of Szymon Rusinkiewicz

ICP - Aligning Surfaces (Scans)

• … and iterate to find alignment

• Converges to some local minimum

• Correct if starting position “close enough“

Slide courtesy of Szymon Rusinkiewicz

Pose Clustering

• General method
� Enumerate possible transformations
� Vote for best one

• Methods
� Pose clustering
� Geometric Hashing
� Generalized Hough Transform

Pose Clustering

• Discretize transformations and scoring

[Wolfson97]

Point Set A

Point Set B

4
5

3

1

2

a

b

c
d

f

e

g

h

k

i

j

Pose Clustering

• Discretize transformations and scoring

[Wolfson97]

Point Set A

Point Set B

Rotation &
Translation

for (4,1)

x

y

14

3

5
2

4
5

3

1

2

a

b

c
d

f

e

g

h

k

i

j

Pose Clustering

• Discretize transformations and scoring

[Wolfson97]

Point Set A

Point Set B

Rotation &
Translation

for (i, j)

x

y

4
5

3

1

2

a

b

c
d

f

e

g

h

k

i

j

ji

10

Pose Clustering

• Discretize transformations and scoring

[Wolfson97]

Point Set A

Point Set B

Rotation &
Translation

for (4,1)

Rotation &
Translation

for (i, j)

x

y

4
5

3

1

2

a

b

c
d

f

e

g

h

k

i

j

Pose Clustering

• Discretize transformations and scoring

[Wolfson97]

Point Set A

Point Set B

Rotation &
Translation

for (4,1)

Rotation &
Translation

for (i, j)

x

y

4
5

3

1

2

a

b

c
d

f

e

g

h

k

i

j

Score correspondences

Geometric Hashing

• Preprocessing

Point Set
in Database

Rotation &
translation
for all pairs
of points in
all molecules

Hash Table [Wolfson97]

Store (object, ref. frame, properties, point)
for every transformed point in hash table

4
5

3

1

2
e,3

g,2h,5

Geometric Hashing

[Wolfson97]

• Query processing

a

b

c
d

f

e

g

h

k

i

j

Point Set
Query

Rotation &
translation
for one pair
of points

Geometric Hashing
• Preprocessing

� For each triple of points
� Compute reference frame
� For each point

Transform point into reference frame
Hash (molecule, ref. frame, properties, point)

• Query processing
� Choose any triple of points
� Compute reference frame
� For each point

Transform point into reference frame
For each entry in hash bin for transformed point
Vote for (object, ref. frame)

Geometric Hashing

• Preprocessing complexity
� O(n4) for n points per binding site

• O(n3) possible triples * O(n) transformations per triple

• Query complexity
� O(m) * binsize for m points in query binding site

• 1 triple * O(m) transformations per triple *
binsize hash processing per transformation

[Wolfson97]

11

Summary

• Different methods for different …
� Transformation types
� Surface representations
� Dissimilarity measures

