Monte Carlo Path Tracer:
The Nasty Details

COS 526, Fall 2006

Outline

Simple path tracer
Importance sampling
Sampling techniques

Russian roulette

Monte Catlo Path Tracer I

For each pixel, repeat n times:
— Choose a ray with p=camera, d=(6,¢) within pixel
— Pixel color += (1/n)* TracePath(p, d)
TracePath(p, d) returns (r,g,b):
— Trace ray (p, d) to find nearest intersection p’
— Select with probability 50%:
* Emitted:
retimn2ea(lermAlteTnsilic s
* Reflected:
generate ray in random direction d”
return 2 * f(d —d") * (nld’) * TracePath(p’, d’)

“onceptual Goal

Estimate radiance
— From different parts of the scene
— Towards the camera

— Recall: this is proportional to “film plane” irradiance

To do this, simulate paths of light
— From light sources

— To camera

Actually trace paths from camera to lights

Monte Catlo Path Tracer I

For each pixel, repeat n times:
— Choose a ray with p=camera, d=(8,@) within pixel
lor += (1/n) * TracePath(p, d)
TracePath(p, d) returns (r,g,b):
— Trace ray (p, d) to find nearest inte
— Select with probability 50%:
* Emitted:

return 2 * (Le,., Le,

reds
* Reflected:
generate ray in random direction d”

return 2 —d’) * (nld’) * TracePath(p’, d’)

Monte Catlo Path Tracer 1

For each pixel, repeat n times:
— Choose a ray with p=camera, d=(8,¢) within pixel
— Pixel color = (1/n) * TracePath(p, d)

TracePath(p, d) returns
— Trace ray (p, d) to find nearestintersection p”
— Select with probability 50%:

* Emitted:

return 2 * (Le,, Le Leye)

i
* Reflec

generate ray in randein direction d”

return 2 * f(d ~d") * (nid") * TracePath(p’, d")




Monte Catlo Path Tracer I Monte Catlo Path Tracer I

For each pixel, repeat n times:
— Choose a ray with p=camera, d=(8,¢) within pixel
— Pixel color += (1/n) * TracePath(p, d)
TracePath(p, d) returns (r,g,b):
— Trace ray (p, d) to find nearest intersection p”
— Select with probability 50% — Select with probability 5
* Emitted: Vei / * Emitted:
return 2 return 2 * (Le
* Reflected: o * Reflected:
generate ray* om direction d”’

For each pixel, repeat n times:

— Choose a ray with p=camera, d=(8,@) within pixel
— Pixel color += (1/n) * TracePath(p, d)
TracePath(p, d) returns (r,g,b):

— Trace ray (p, d) to find neares

redr

generate ray in random direction d”
return s g CH return 2 * f(d —d’) * (n[d") * TracePath(p’, d’)

Drawbacks Outline

This algorithm is unbiased, but horribly inefficient

Simple path tracer
— Sample “emitted” 50

of the time, even if emitted=0 Importance sampling
— Reflect rays in random directions, even if mirror

Sampling techniques
— If light source is small, rarely hit it il 1

- i : ’ : : Russian roulette
Goal: improve efficiency without introducing bias

Improving Path Tracer brtance Sampling

Method: importance sampling Can pick paths however we want, but

Probability of picking path depends on energy contribution weighted by 1/probability

— Don't pick low-energy paths
— Go out of your way to select high-energy paths

N
Can apply at “micro” level (e.g., selecting E(f(x) L ‘ I f(x)dx = ! 3y,
reflected ray directions) 2 N i

. . _ 00
Can apply at “macro” level (e.g., selecting = p(X)
reflected/emitted or casting rays to lights)




Monte Catlo Path Tracer I Monte Catlo Path Tracer I1

TracePath(p, d) returns (r,g,b): TracePath(p, d) returns (r,g,
— Trace ray (p, d) to find nearest intersection p” — Trace ray (p, d) to find near
— Select with probability 50%:

— If Le = (0,0,0) then p,.; = 0
* Emitted: else if ,0,0) then pepy, =
return 2 * (L 5 y else [ORES .9
— If random() < pgp then
* Emitted:
return (1/ Penic v Leie)
* Reflected:
generate ray in random direction d”

return (1/ (1=pemp) * f(d ~d’) * (nld") * TracePath(p’, d’)

other Variation Monte Catlo Path Tracer I11

Reflected case:

TracePath(p, d) returns (r,g,b):
— Pick a light source i

— Trace a ray towards that light

— Trace a ray anywhere except for that light
* Rejection sampling

* Reflected:
— Divide by probabilities

generate ray in random direction d” towards a light

L, = (1/2pyg,) * f{d ~d") * (n") * TracePath(p’, d")

generate ray in random direction d” not towards the light
L, += (1/2*(1-pyg)) * f(d ~d’) * (n1d") * TracePath(p’, d")

return (1/ (1=pemi)) * L,

Monte Catlo Path Tracer 111 Outline
What are probabilities? Simple path tracer
~ Pign = 1/(s0lid angle of light) for ray to light source
— (1 — the above) for non-light ray

Importance sampling
— Extra factor of 2 becau

: Sampling techniques
shooting 2 ra:

Russian roulette




2-D Sampling Techniques Sampling a Triangular Domain

At several points in this algorithm, need to To generate a point within a triangle
sample a 2D domain with vertices v, v;, vyt
— Within a pixel, when generating paths (easy) — Generate random s and t on [0..1]
— Within a triangle, when sampling a light source —Ifs+t>1,lets —« 1-sand t - 1=t
— Within the hemisphere of reflected directions — Construct point v, +5(v; =g ) +t(v, = V)

* Uniform

* Weighted by cosine

hted by BRDF

Reflected Ray Sampling Uniform Directional Sampling

Uniform directional sampling: how to generate Option #2: inversion method
random ray on a hemisphere? — In polar coords, density must be proportional to sin 8

> s : ber d(solid angle) = 16d
Option #1: rejection sampling eme e isolasRe) i)

— Generate random numbers (x,y,z), with x,y,z in =1..1 odegal it cor
— If x24+y2+22 > 1, reject So, recipe is
— Normalize (x,y,z) — Generate @in 0..2T
— If pointing into surface (ray dot n < 0), flip — Generate zin 0..1
— Let = cos'z

— (x,y,2) = (sin @cos ¢ sin Bsin ¢ cos H

BRDF Importance Sampling BRDF Importance Sampling

Better than uniform sampling: importance For cosine-weighted Lambertian:
sampling — Density = cos 8 sin 6
Because you divide by probability, ideally = lnliis, ISt -
probability O f, * cos g So, recipe is:
[Lafortune, 19941 — Generate @in 0..2T
— Generate z in 0..1

— Let 8= cos™ (sqrt(z))

(@, @) =k,
JT




BRDF Importance Sampling

Phong BRDF: f, "o where ais angle
between outgoing ray and ideal mirror direction

Constant scale = k,(n+2)/(277

Can’t sample this times cos g
— Can only sample BRDF itself, then multiply by cos 8

— That's OK — still better than random sampling

BRDF Importance Sampling

Recipe for combining terms:
— r = random()
— If (r < k,) then
* d’ = sample diffuse direction
ky
r <k, + k) then
mple diffuse direction

igh

* terminate ray

Russian Roulette

Maintain current weight along path

(need another parameter to TracePath)
Terminate ray probabilistically if weight is
less than some threshold

Scale radiance along path by probability

If (weight < Thresh) then
If (random() < P) then terminate path
else weight = weight / (1 — P)

BRDF Importance Sampling

Recipe for sampling specular term:
g

— Generate z in 0..1

— Let a = cos™ (z/n+1)

— Generate @, in 0..2T

This gives direction w.r.t. ideal mirror direction

Simple path tracer
Importance sampling
Sampling techniques

Russian roulette




