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Motivation

Rendering = integration
— Antialiasing
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Specular

Rendering = integration Surface

— Antialiasing
— Soft shadows
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Challenge

Rendering integrals are difficult to evaluate

— Multiple dimensions
— Discontinuities

* Partial occluders

* Highlights
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We can approximate

L
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Estimating the average
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Integration in 1D
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Multidimensional Domains

Same ideas apply for integration over ... Motivation
2
- Plebes Monte Carlo integration
— Surfaces
: Monte Carlo path tracing
— Projected areas ;
e Variance reduction techniques
B Pixel
— Camera apertures Sampling techniques
2
— Time Conclusion
— Paths

Surface

Monte Carlo Path Tracing Simple Monte Carlo Path Ttz

Specular i oy ! F
Integrate radiance \‘mm\ i Step 1: Choose a ray p=camera, d=(6 ¢); assign weight = 1

for each pixel e : ;
3 Trace ray to find intersection with nearest surface
by sampling paths

=/ 5 [} y y i
landomly Randomly choose between emitted and reflected light
Pixel >/

— Step 3a: If emit

return weight * Le
If reflec
weight * flectance
Generate ray in random direction

Diffuse Surface i
¢ 1CE Co 2
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Monte Catlo Path Tracing Monte Catlo Path Tracing

Advantages
Any type of geometry (procedural, c
Any type of BRDF (specular, glo
Samples all types of paths
Accuracy controlled at pixel level
Low memoi ry consum ')TiU n
Unbiased - error appears as noise in final image
isadvantages

Slow convergence

Noise in final image T 7 z
o Big diffuse light source, 20 minutes
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Monte Carlo Path Tracing

N
DIF)=E(f O

E(f(x))

1000 paths/pixel
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Variance Outline

Motivation

Var[E( f(x))] = ﬁVar[f (x)]

Monte Carlo integration
Monte Carlo path tracing

Variance decreases as 1/N } S

Etft0) it Variance reduction techniques

Sampling techniques

Conclusion

Variance Variance Reduction Techniques

Problem: variance decreases with 1/N Importance sampling

— Increasing # sa oves noise slow L .
Increasing # samples removes noise slowly Stratified sampling

Metropolis sampling

¢ . o
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A / o i=1




Importance Sampling

Put more samples where f(x) is bigger

1 N
fdx=—>"Y,
[ ome

f(x)
Eifx N Y =—i
(f(x)) p(X)

Importance Sampling

Zero variance if p(x) ~ f(x)

p(x) = cf (x)

Yi= M = l
p(x) ¢

Var(Y)=0

E(f(x)

Less variance with better
importance sampling

Stratified Sampling

This is still unbiased
FN
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Importance Sampling
This is still unbiased
E[Y]= [0 pOodx
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= Im p(x)dx
P(x)
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= [ foodx
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for all N

Stratified Sampling

Estimate subdomains separately

Ef0)

Stratified Sampling

Less overall variance if less variance

in subdomains
1

Var[F,] = Zhi:N‘Var[F‘]
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Outline Simple Monte Carlo Path Tracer

Motivation : Choose a ray (u,v, § @); assign weight = 1

Monte Carlo integration Trace ray to find intersection with nearest surface
Monte Carlo path tracing .
Randomly choose between emitted and reflected light
— Step 3a: If emitted,
i # return weight * Le
Sampling techniques g g
2 — Step 3b: If reflect

w

Variance reduction techniques

Conclusion

Go to step 2

Sampling Techniques Generating Random Points

Problem: how do we generate random
points/directions during path tracing?

Uniform distribution:

— Use random number generator
— Non-rectilinear domains

— Importance (BRDF)
— Stratified

Surface

Generating Random Points Generating Random Points

Specific probability distribution:

— Function inversion

Specific probability distribution:

— Function i

— Rejection — Rejection
— Metropolis — Metropolis
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Specific probability distribution: Specific probability distribution:
— Function inversion

— Function inversion
— Rejection

— Rejection
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Generating Random Points

Generating Random Points

Specific probability distribution:
— Function inversio

Specific probability distribution:

— Function inversion
— Rejection

— Rejection
— Metropolis

— Metropolis




Generating Rand Combining Multiple PDFs

Specific probability distribution:
— Function inversion — Use combination of samples generated for each PDF
— Rejection : — Number of samples for each PDF ch

Balance heuristic

sen by weights
— Metropolis

— Near optimal

Monte Carlo Path Tracing Image

Monte Carlo Extensions

Unbiased
— Bidirectional path tracing

— Metropolis light transport

Biased, but consistent
— Noise filtering
— Adaptive sampling

— Irradiance caching

2000 samples per pixel, 30 computers, 30 hours

ensen

Monte Catlo Extensions Monte Catlo Extensions

Unbiased Unbiased
— Bidirectional path tracing — Bidirectional path tracing
— Metropolis light transport — Metropolis light transport
Biased, but consistent Biased, but consistent
— Noise filtering — Noise filtering

— Adaptive sampling — Adaptive sampling

o
— Irradiance caching

— Irradiance caching

Heinrich



Monte Catlo Extensions Monte Carlo Extensions

Unbiased

Unbiased
— Bidirectional path tracing

— Bidirectional path tracing

— Metropolis light transport — Metropolis light transport

Biased, but consistent Biased, but consistent P

DGle

— Noise filtering — Noise filtering
— Adaptive sampling

— Adaptive sampling
— Irradiance caching

— Irradiance caching

Filtered ensen

Adaptive Ohbuchi

Monte Catlo Extensions Summary

Unbiased Monte Carlo Integration Met

— Bidirectional path tracing — Very general

— Metropolis light transport — Good for complex functions with high dimensionality

Biased, but consistent — Converge slowly (but error appears as noise)

— Noise filtering Conclusion

— Adaptive sampling — Preferred method for difficult scenes

— Irradiance caching — Noise removal (filtering) and
irradiance caching (photon maps)
used in practice

ensen
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More Information

Books

— Realistic Ray Tracing, Peter Shirley

— Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen

Theses
— Robust Monte Carlo Methods for l/g/:l Transport Simulation, Eric Veach
— Mathematical Models and Monte Carlo Methods for Physically Based Rendering,

Eric La Fortune

Course Notes

Fall 1997
— State of t

Course 2
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