COS 521: Advanced Algorithm Design Homework 1 Due: Wed, Oct 4 (in class)

Collaboration Policy: You may collaborate with other students on these problems. Collaboration is limited to discussion of ideas only, and you should write up the solutions entirely *on your own* and *list your collaborators* as well as *cite any references* you may have used.

1. **Definition 0.1** A family of hash functions $H = \{h : M \to N\}$ is said to be a perfect hash family if for each set $S \subseteq M$ of size $s \leq n$, there exists a hash function $h \in H$ that is perfect for S.

Assuming that n = s, show that any perfect hash family must have size $2^{\Omega(s)}$.

2. Consider the following generalization of perfect hash functions.

Definition 0.2 Let $b_i(h, S) = |\{x \in S | h(x) = i\}$. A hash function h is b-perfect for S if $b_i(h, S) \leq b$ for each i. A family of hash functions $H = \{h : M \to N\}$ is said to be a b-perfect hash family if for each $S \subseteq M$ of size s there exists a hash function $h \in H$ that is b-perfect for S.

Show that there exists a *b*-perfect hash family *H* such that $b = O(\log n)$ and $|H| \le m$, for any $m \ge n$.

- 3. We analyzed the process of throwing n balls into n bins independently and at random and showed that the maximum load is at most $O(\frac{\log n}{\log \log n})$ with high probability.
 - (a) Suppose instead that the balls are assigned to bins by a function f which is chosen from a 2-universal family. Establish an upper bound on the maximum load that holds with probability at least 1/2 in this case.
 - (b) Suppose we have a family of hash functions $\mathcal{H} = \{h : [n] \to [n]\}$ such that, for all $x_1, \ldots x_k, y_1, \ldots y_k \in [n],$

$$\Pr_{h \in H}[(h(x_1) = y_1) \land (h(x_2) = y_2) \land \dots \land (h(x_k) = y_k]] \le O(1/n^k)$$

Suppose the allocation of balls into bins is done using a function $h \in \mathcal{H}$ chosen at random. Obtain an upper bound on the maximum load that holds with probability at least 1/2 in this case. 4. Prove the following extension of the Chernofff bound we proved in class. Let $X = \sum_{i=1}^{n} X_i$ where the X_i are independent 0-1 random variables. Let $\mu = E[X]$. Suppose that $\mu_L \leq \mu \leq \mu_H$. Then for any $\delta > 0$,

$$\Pr(X \ge (1+\delta)\mu_H) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_H}.$$

For $0 < \delta < 1$,

$$\Pr(X \le (1-\delta)\mu_L) \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu_L}.$$