
Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 1

The SQL Query Language

Structured Query Language
Developed by IBM (system R) in the 1970s
Need for a standard since it is used by many vendors
Standards:

• SQL-86
• SQL-89 (minor revision)
• SQL-92 (major revision)
• SQL-99 (major extensions)
• SQL 2003 (XML ↔ SQL)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 2

Creating Relations in SQL
CREATE TABLE Movie (

name CHAR(30),
producer CHAR(30),
rel_date CHAR(8),
rating CHAR,
PRIMARY KEY (name, producer, rel_date))

CREATE TABLE Acct
(bname CHAR(20),
acctn CHAR(20),
bal REAL,
PRIMARY KEY (acctn),
FOREIGN KEY (bname REFERENCES branch)

CREATE TABLE Branch
(bname CHAR(20),
bcity CHAR(30),
assets REAL,
PRIMARY KEY (bname))

Observe that the type
(domain) of each
attribute is specified, and
enforced by the DBMS
whenever tuples are
added or modified.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 3

Referential Integrity in SQL
SQL-92 on support all 4 options on deletes and updates.

• Default is NO ACTION (delete/update is rejected)
• CASCADE (also delete all tuples that refer to deleted

tuple)
• SET NULL / SET DEFAULT (sets foreign key value of

referencing tuple)
CREATE TABLE Acct

(bname CHAR(20) DEFAULT ‘storage’,
acctn CHAR(20),
bal REAL,
PRIMARY KEY (acctn),
FOREIGN KEY (bname) REFERENCES Branch

ON DELETE SET DEFAULT)
BUT individual implementations may NOT support

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 4

Primary and Candidate Keys in SQL
Possibly many candidate keys (specified using
UNIQUE), one of which is chosen as the primary key.

CREATE TABLE Book
(isbn CHAR(10)

title CHAR(100),
ed INTEGER,
pub CHAR(30),
date INTEGER,
PRIMARY KEY (isbn),
UNIQUE (title, ed))

There at most one book with
a given title and edition –
date, publisher and isbn are
determined
Used carelessly, an IC can
prevent the storage of
database instances that arise
in practice! Title and ed
suffice?
UNIQUE (title, ed, pub)?

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 5

Destroying and Alterating Relations

Destroys the relation Acct. The schema information the
tuples are deleted.

DROP TABLE Acct

Adds a new attribute; every tuple in the current
instance is extended with a null value in the new
attribute.

ALTER TABLE Acct
ADD COLUMN Type CHAR (3)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 6

Adding and Deleting Tuples

To insert a single tuple:
INSERT INTO Branch (bname, bcity, assets)

VALUES (‘Nassau ST. ‘, ‘Princeton’, 7320571.00)

(bname, bcity, assets) optional

To delete all tuples satisfying some condition:
DELETE FROM Acct A

WHERE A.acctn = ‘B7730’

To update:
UPDATE Branch B

SET B.bname = ‘Nassau East’
WHERE B.bname = ‘Nassau St.’

Basics:

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 7

Basic SQL Query

• from-list A list of relation names (possibly with a
range-variable after each name).

• select-list A list of attributes of relations in from-
list

• qualification Comparisons (Attr op const or Attr1
op Attr2, where op is one of <, >,=, ≤, ≥, ≠)
combined using AND, OR and NOT.

• DISTINCT is an optional keyword indicating that
the answer should not contain duplicates. Default
is that duplicates are not eliminated!

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 8

Conceptual Evaluation Strategy

Semantics of an SQL query defined in terms
of the following conceptual evaluation
strategy:

• Compute the cross-product of from-list.
• Discard resulting tuples if they fail qualifications.
• Delete attributes that are not in select-list.
• If DISTINCT is specified, eliminate duplicate rows.

This strategy is probably the least efficient
way to compute a query! An optimizer will
find more efficient strategies to compute the
same answers.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 9

Example Instances

bname acctn bal
pu 33 356
nyu 45 500

bname bcity assets
pu Pton 10
nyu nyc 20
time sq nyc 30

R1

S1

We will use these
instances of the
Acct and Branch
relations in our
examples.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 10

Example of Conceptual Evaluation
SELECT R.acctn
FROM Branch S, Acct R
WHERE S.bname=R.bname AND S.assets<20

bname bcity assets bname acctn bal
pu Pton 10 pu 33 356
pu Pton 10 nyu 45 500
nyu nyc 20 pu 33 356
nyu nyc 20 nyu 45 500

time sq nyc 30 pu 33 356
time sq nyc 30 nyu 45 500

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 11

A Note on Range Variables

Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:
SELECT R.acctn
FROM Branch S, Acct R
WHERE S.bname=R.bname

AND assets<20

SELECT acctn
FROM Branch, Acct
WHERE Branch.bname=Acct.bname AND assets<20

It is good style,
however, to use
range variables
always!OR

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 12

Find branches with at least one acct and their cities

Would adding DISTINCT to this query make a
difference?
What if only SELECT S.bcity ? Would adding
DISTINCT to this variant of the query make a
difference?

SELECT S.bname, S.bcity
FROM Branch S, Acct R
WHERE S.bname=R.bname

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 13

Expressions and Strings

Illustrates use of arithmetic expressions and
string pattern matching: Find pairs (Alumnus(a)
name and age defined by year of birth) for alums
whose dept. begins with “C” and ends with “S”.
LIKE is used for string matching. `_’ stands for
any one character and `%’ stands for 0 or more
arbitrary characters.

SELECT A.name, age=2006-A.yrofbirth
FROM Alumni A
WHERE A.dept LIKE ‘C%S’

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 14

CREATE TABLE Acct
(bname CHAR(20),
acctn CHAR(20),
bal REAL,
PRIMARY KEY (acctn),
FOREIGN KEY (bname REFERENCES Branch)

CREATE TABLE Branch CREATE TABLE Cust
(bname CHAR(20), (name CHAR(20),
bcity CHAR(30), street CHAR(30),
assets REAL, city CHAR(30),
PRIMARY KEY (bname)) PRIMARY KEY (name))

CREATE TABLE Owner
(name CHAR(20),
acctn CHAR(20),
FOREIGN KEY (name REFERENCES Cust)
FOREIGN KEY (acctn REFERENCES Acct))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 15

Find names of customers with accts in branches in
Princeton or West Windsor (WW)

UNION: Can be used
to compute the union
of any two union-
compatible sets of
tuples (which are
themselves the result
of SQL queries).
If we replace OR by
AND in the first
version, what do we
get?
Also available:
EXCEPT (What do
we get if we replace
UNION by
EXCEPT?)

SELECT D.name
FROM Acct A, Owner D, Branch B
WHERE D.acctn=A.acctn AND

A.bname=B.bname AND (B.bcity=
‘Princeton’ OR B.bcity=‘WW’)

SELECT D.name
FROM Acct A, Owner D, Branch B
WHERE D.acctn=A.acctn AND

A.bname=B.bname AND B.bcity=
‘Princeton’

UNION
SELECT D.name
FROM Acct A, Owner D, Branch B
WHERE D.acctn=A.acctn AND

A.bname=B.bname AND B.bcity=‘WW’

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 16

Find names of customers with accts in branches in
Princeton and West Windsor (WW)

INTERSECT: Can be
used to compute
the intersection of
any two union-
compatible sets of
tuples.

Contrast symmetry
of the UNION and
INTERSECT queries
with how much
the other versions
differ.

SELECT D1.name
FROM Acct A1, Acct A2, Owner D1,
Owner D2, Branch B1, Branch B2

WHERE D1.name=D2.name AND
D1.acctn=A1.acctn AND D2.acctn=A2.acctn AND

A1.bname=B1.bname AND A2.bname=B2.bname
AND B1.bcity=‘Princeton’ AND B2.bcity=‘WW’

SELECT D.name
FROM Acct A, Owner D, Branch B
WHERE D.acctn=A.acctn AND

A.bname=B.bname AND
B.bcity=‘Princeton’

INTERSECT
SELECT D.name
FROM Acct A, Owner D, Branch B
WHERE D.acctn=A.acctn AND

A.bname=B.bname AND B.bcity=‘WW’

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 17

Nested Queries

A very powerful feature of SQL: a WHERE clause can itself
contain an SQL query! (Actually, so can FROM and HAVING
clauses.)

What get if use NOT IN?
To understand semantics of nested queries, think of a nested

loops evaluation: For each Acct tuple, check the qualification by
computing the subquery.

SELECT A.bname
FROM Acct A
WHERE A.acctn IN (SELECT D.acctn

FROM Owner D, Cust C
WHERE D.name = C.name AND C.city=‘Rome’)

Find names of all branches with accts of cust. who live in Rome

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 18

Nested Queries with Correlation

EXISTS is another set comparison operator, like IN.
If UNIQUE is used, and * is replaced by E.name, finds acct no.s
whose owners own no more than one acct with a balance over 1000.
(UNIQUE checks for duplicate tuples; * denotes all attributes. Why
do we have to replace * by E.name?)
Illustrates why, in general, subquery must be re-computed for each
Branch tuple.

Find acct no.s whose owners own at least
one acct with a balance over 1000

SELECT D.acctn
FROM Owner D
WHERE EXISTS (SELECT *

FROM Owner E, Acct R
WHERE R.bal>1000 AND R.acctn=E.acctn

AND E.name=D.name)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 19

Nested Queries – avoid duplicates
Find names and cities of branches with
at least one acct

SELECT S.bname, S.bcity
FROM Branch S, Acct R
WHERE S.bname=R.bname

What had in slide # 12 gives duplicates :

Does this? WHY?

SELECT S.bname, S.bcity
FROM Branch S
WHERE EXISTS (SELECT R.bname

FROM Acct R
WHERE S.bname=R.bname)

Better to use SELECT DISTINCT with first version or to use second version?

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 20

More on Set-Comparison Operators

We’ve already seen IN, EXISTS and UNIQUE. Can
also use NOT IN, NOT EXISTS and NOT UNIQUE.
Also available: op ANY, op ALL, op in
Find names of branches with assets at least as large as
the assets of some NYC branch:

>< = ≥≤ ≠, , , , ,

SELECT B.bname
FROM Branch B
WHERE B.assets ≥ ANY (SELECT Q.assets

FROM Branch Q
WHERE Q.bcity=’NYC’)

Includes NYC branches?

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 21

Division in SQL

SELECT R.wname
FROM Winners R
WHERE NOT EXISTS

((SELECT S.tourn
FROM Winners S)

EXCEPT
(SELECT T.tourn
FROM Winners T
WHERE T.wname=R.wname))

Find tournament winners who have won all tournaments.

CREATE TABLE Winners
(wname CHAR((30),

tourn CHAR(30),
year INTEGER)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 22

Division in SQL – template

SELECT
FROM
WHERE NOT EXISTS

((SELECT
FROM
WHERE)

EXCEPT
(SELECT

FROM
WHERE)

Find name of all customers who have accounts at all
branches in Princeton.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 23

Division in SQL – our example

SELECT C.name
FROM Cust C
WHERE NOT EXISTS

((SELECT B.bname
FROM Branch B
WHERE B.bcity = ‘Princeton’)

EXCEPT
(SELECT A.bname
FROM Acct A, Owner D
WHERE A.acctn = D.acctn

AND D.name = C.name))

Find name of all customers who have accounts at all
branches in Princeton.

branch name
A acct. number

balance
owner’s name
acct.number

D

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 24

Aggregate Operators
Significant extension of
relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (R.bal)
FROM Acct R
WHERE R.bname=‘nyu’

SELECT COUNT (*)
FROM Acct R

SELECT AVG (DISTINCT R.bal)
FROM Acct R
WHERE R.bname=‘nyu’

SELECT S.bname
FROM Branch S
WHERE S.assets=

(SELECT MAX(T.assets)
FROM Branch T)

single column

SELECT COUNT (DISTINCT S.bcity)
FROM Branch S

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 25

Find name and city of the poorest branch

The first query is
illegal! (We’ll look
into the reason a bit
later, when we
discuss GROUP BY.)

Is it poorest branch
or poorest branches?

SELECT S.bname, MIN (S.assets)
FROM Branch S

SELECT S.bname, S.assets
FROM Branch S
WHERE S.assets =

(SELECT MIN (T.assets)
FROM Branch T)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 26

GROUP BY and HAVING

So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to
apply them to each of several groups of tuples.
Consider: Find the maximum assets of all branches
in a city for each city containing a branch.

• If we know all the cities we could write a query for
each city:

SELECT MAX(B.assets)
FROM Branch B
WHERE B.bcity=‘nyc’

• Not elegant. Worse: what if add or delete a city?

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 27

Queries With GROUP BY and HAVING

The select-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).

• The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group,
and these attributes must have a single value per group.
(A group is a set of tuples that have the same value for
all attributes in grouping-list.)

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 28

Conceptual Evaluation
The cross-product of from-list is computed, tuples that fail
qualification are discarded, `unnecessary’ attributes are
deleted, and the remaining tuples are partitioned into
groups by the value of attributes in grouping-list.
The group-qualification is then applied to eliminate some
groups. Expressions in group-qualification must have a
single value per group!

• In effect, an attribute in group-qualification that is not an
argument of an aggregate op also appears in grouping-
list. (SQL does not exploit primary key semantics here!)

One answer tuple is generated per qualifying group.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 29

What attributes are unnecessary?
↓

What attributes are necessary:

Exactly those mentioned in
SELECT, GROUP BY or HAVING clauses

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 30

Find the maximum assets of all branches in a
city for each city containing a branch.

SELECT B.bcity, MAX(B.assets)
FROM Branch B
GROUP BY B.bcity

empty WHERE and HAVING

bname bcity assets
pu Pton 10
pmc Pton 8
nyu nyc 20
time sq nyc 30

bcity assets
Pton 10
Pton 8
nyc 20
nyc 30

bcity
Pton 10
nyc 30

2nd column of result
is unnamed.
(Use AS to name it.)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 31

For each city, find the average assets of all
branches in the city that have assets under 25

SELECT B.bcity, AVG(B.assets) AS avg_assets
FROM Branch B
GROUP BY B.bcity
HAVING B.assets < 25

WRONG! Why?

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 32

For each city, find the average assets of all
branches in the city that have assets under 25

bcity avg_assets
Pton 9
nyc 20

SELECT B.bcity, AVG(B.assets) AS avg_assets
FROM Branch B
WHERE B.assets < 25
GROUP BY B.bcity

bcity assets
Pton 10
Pton 8
nyc 20

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 33

For each customer living in nyc (identified by name),
find the total balance of all accounts in the bank

Grouping over a join of three relations.
Why are both C.name and C.city in GROUP BY?
• Recall Cust.name is primary key

What if we remove HAVING C.city=‘nyc’ and add
AND C.city=‘nyc’ to WHERE

SELECT C.name, SUM (A.bal) AS total
FROM Cust C, Owner D, Acct A
WHERE C.name=D.name AND D.acctn=A.acctn
GROUP BY C.name, C.city
HAVING C.city=‘nyc‘

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 34

For each cust. (id. by name) with an acct. in a NYC
branch, find the total balance of all accts in the bank

FROM Cust C, Owner D2, Acct A2, Branch B
WHERE C.name=D2.name AND D2.acctn=A2.acctn

ANDA2.bname=B.bname AND B.bcity=‘nyc’

SELECT C.name, SUM (A2.bal) AS total
FROM Cust C, Owner D1, Owner D2, Acct A1, Acct A2,

Branch B
WHERE C.name=D1.name AND C.name=D2.name AND

D1.acctn=A1.acctn AND D2.acctn=A2.acctn AND
A1.bname=B.bname AND B.bcity=‘nyc’

GROUP BY C.name

Why not

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 35

Null Values

Attribute values in a tuple are sometimes unknown (e.g., a
rating has not been assigned) or inapplicable (e.g., no
spouse’s name).

• SQL provides a special value null for such situations.
The presence of null complicates many issues. E.g.:

• Special operators needed to check if value is/is not null.
• Is rating>8 true or false when rating is equal to null? What about

AND, OR and NOT connectives?
• We need a 3-valued logic (true, false and unknown).
• Meaning of constructs must be defined carefully. (e.g., WHERE

clause eliminates rows that don’t evaluate to true.)
• New operators (in particular, outer joins) possible/needed.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 36

Joins in SQL

SQL has both inner joins and outer join
Use in "FROM … " portion of query
Inner join variations as for relational algebra
Cust INNER JOIN Owner ON

Cust.name =Owner.name
Cust INNER JOIN Owner USING (name)
Cust NATURAL INNER JOIN Owner

Outer join includes tuples that don’t match
• fill in with nulls
• 3 varieties: left, right, full

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 37

•

Outer Joins

Left outer join of S and R:
• take inner join of S and R (with whatever qualification)
• add tuples of S that are not matched in inner join, filling

in attributes coming from R with "null"
Rightouter join:
• as for left, but fill in tuple of R

Full outer join:
• both left and right

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 38

Example
Given
Tables:

NATURAL INNER JOIN:

NATURAL LEFT OUTER JOIN add:

NATURAL RIGHT OUTER JOIN add:

NATURAL FULL OUTER JOIN add both

Butler21
Mathey35
Forbes77
collegesid

MOL42
COS21
ELE77
deptsid

Butler
Forbes

COS21
ELE77

nullMathey35

MOLnull42

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 39

Example Query

SELECT DISTINCT B.bname, C.name
FROM Branch B LEFT OUTER JOIN Cust C

ON Branch.bcity =Cust.city

What does this produce?

Branch: (bname bcity assets)
Cust: (name, street, city)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 40

General form SQL Query
Now seen all major components

Structure of Query:
SELECT select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

UNION or INTERSECT or EXCEPT

SELECT select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

… continuing general query form

Three set operations
Only these combine separate
SELECT statements.
All other SELECTs nested.

Scope of range variable
within SELECT… FROM…
and nested subqueries in it

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 41

Views

A view is just a relation, but we store a definition,
rather than a set of tuples.

CREATE VIEW
YoungStudentGrades (name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Views can be dropped using the DROP VIEW command.
• How to handle DROP TABLE if there’s a view on the

table?
• DROP TABLE command has options to let user specify this.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 42

Integrity Constraints (Review)
An IC describes conditions that every legal
instance of a relation must satisfy.

• Inserts/deletes/updates that violate IC’s are
disallowed.

• Can be used to ensure application semantics (e.g., sid
is a key), or prevent inconsistencies (e.g., sname has to
be a string, age must be < 200)

Types of IC’s: Domain constraints, primary key
constraints, candidate key constraints, foreign
key constraints, general constraints.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 43

General Constraints

Useful when
more general
ICs than keys
are involved.

CREATE TABLE GasStation
(name CHAR(30),

street CHAR(40),
city CHAR(30),
st CHAR(2),
type CHAR(4),
PRIMARY KEY (name, street, city, st),
CHECK (type=‘full’ OR type=‘self’),
CHECK (st <>’nj’ OR type=‘full’))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 44

More General Constraints

Can use
queries to
express
constraint.
Constraints
can be
named.

CREATE TABLE FroshSemEnroll
(sid CHAR(10),

sem_title CHAR(40),
PRIMARY KEY (sid, sem_title),
FOREIGN KEY (sid) REFERENCES Students
CONSTRAINT froshonly
CHECK (2010 IN

(SELECT S.classyear
FROM Students S
WHERE S.sid=sid)))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 45

Constraints Over Multiple Relations

Cannot impose as CHECK on each table. If either
table is empty, the CHECK is satisfied
Is conceptually wrong to associate with individual
tables
ASSERTION is the right solution; not associated with
either table.

Number of bank branches in a city is less than 3 or the
population of the city is greater than 100,000

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 46

Number of bank branches in a city is less than 3 or
the population of the city is greater than 100,000

CREATE ASSERTION branchLimit
CHECK
(NOT EXISTS ((SELECT C.name, C.state

FROM Cities C
WHERE C.pop <=100000)

INTERSECT
(SELECT D.name, D.state

FROM Cities D
WHERE 3 <=

(SELECT COUNT (*)
FROM Branches B
WHERE B.bcity=D.name))))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 47

Triggers

Trigger: procedure that starts automatically if
specified changes occur to the DBMS
Three parts:

• Event (activates the trigger)
• Condition (tests whether the triggers should run)
• Action (what happens if the trigger runs)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 48

Summary

SQL was an important factor in the early
acceptance of the relational model; more
natural than earlier, procedural query
languages.
Relationally complete; in fact, significantly
more expressive power than relational
algebra.
Even queries that can be expressed in RA can
often be expressed more naturally in SQL.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 49

Summary (Contd.)

Many alternative ways to write a query;
optimizer should look for most efficient
evaluation plan.

• In practice, users need to be aware of how queries
are optimized and evaluated for best results.

NULL for unknown attribute values brings
many complications
SQL allows specification of rich integrity
constraints
Triggers respond to changes in the database

