COS 425: Database and Information Management Systems - Fall 06 Summary of relational operation properties- updated 10/5/06 2:14 pm

Selection $\sigma_P(R)$ for relation R and predicate P on attributes of R:

is the relation with the same schema as R that contains those tuples of R that satisfy P. Candidate keys and foreign keys in R are preserved

Projection $\pi_S(R)$ for relation R and S a list of attributes from R:

is the relation containing all tuples formed by taking a tuple from R and keeping only the attributes listed in S.

In the formal definition, relations are *sets*, and so duplicates are removed.

In practice, duplicates are not removed unless explicitly requested.

If a candidate key or foreign key is projected (i.e. included in S) then the constraint is preserved. If no candidate key is projected, the only key may be all attributes in S (in the set model).

Union RUS for relations R and S on the same universe $D_1 \times D_2 \times ... \times D_k$, where D_i is the domain for the i^{th} attribute:

is the relation that includes any tuple in either R or S.

Formal model removes duplicates.

Candidate keys are not preserved.

A foreign key is preserved if it is a foreign key for both R and S using corresponding attributes and referencing the same relation.

Set difference R-S for relations R and S on the same universe:

is the relation that includes all tuples in R that are not in S. *constraints left as an exercise*

Cross product R X T for relations R and T:

For R C $D_1 \times D_2 \times ... \times D_k$ and T C $S_1 \times S_2 \times ... \times S_m$, R X T C $D_1 \times D_2 \times ... \times D_k \times S_1 \times S_2 \times ... \times S_m$ and tuple $(d_1, d_2, ..., d_k, s_1, s_2, ..., s_m) \in R \times T$ if and only if $(d_1, d_2, ..., d_k) \in R$ and $(s_1, s_2, ..., s_m) \in T$

If attributes in positions i_1 , i_2 , ... i_{α} form a candidate key for R and attributes in positions j_1 , j_2 , ... j_{β} form a candidate key for T, then the union of the attributes - positions i_1 , i_2 , ... i_{α} , $k+j_1$, $k+j_2$... $k+j_{\beta}$ of R X T - form a candidate key for R X T.

Foreign keys for each of R and T are preserved using corresponding attributes of RXT.

Renaming operation $\rho(Q(L), E)$, where E is a relational algebra expression, Q is a new relation name and L is a list of (old name \rightarrow new name) or (attribute position \rightarrow new name) mappings of attributes of E:

defines relation Q as the relation expressed by E, but with attributes in the list L renamed according to the given mappings.

All constraints on the relation expressed by E are preserved with appropriate renaming of attributes.