
1

1

COS 425:
Database and Information

Management Systems

Indexing files, Part II

2

Dynamic hashing

• Have talked about static hash
– Pick a hash function and bucket organization

and keep it
– Assume (hope) inserts/deletes balance out
– Use overflow pages as necessary

• What if database growing?
– Overflow pages may get too plentiful
– Reorganize hash buckets to eliminate

overflow buckets
• Can’t completely eliminate

3

Family of hash functions

• Static hashing:
choose one good hash function h
– What is “good”?

• Dynamic hashing:
chose a family of good hash functions
– h0, h1, h2, h3, … hk
– hi+1 refines hi :

if hi+1(x)= hi+1(y) then hi(x)=hi(y)

2

4

A particular hash function family
• Commonly used: integers mod 2i

– Easy: low order i bits

• Base hash function can be any h mapping
hash field values to positive integers

• h0(x)= h(x) mod 2b for a chosen b
– 2b buckets initially

• hi(x)= h(x) mod 2b+i

– Double buckets each refinement

• If x integer, h(x)= x sometimes used
What does this assume for h0 to be good?

5

Specifics of dynamic hashing
• Conceptually double # buckets when reorganize
• Implementationally don’t want to allocate space

may not need
– One bucket overflows, double all buckets? NO!

Solution? R&G text presents two versions:
• Extendible hashing

– Reorganize when and where need
• Linear hashing

– Reorganize when need but not where need
– Reduces overflow buckets on average

6

Extendible hashing
• When a bucket overflows,

– actually split that bucket in two
– Conceptually split all buckets in two

• Use directory to achieve:
directory New directory

overflows split

new

Buckets Buckets

3

7

Extendible hashing details
• Indexing directory with hi(x)= h(x) mod 2b+i

• On overflow, index directory with
hi+1(x)= h(x) mod 2b+i+1

• Directory size doubles
• Add one bucket

00 overflows split

new

01
10
11

000
001
010
011
100
101
110
111

8

• What did we do?
– Split overflowing bucket m

• Allocate new bucket
– Copy directory
– Change pointer of directory entry m+2b+i

Keep track of how many bits actually using
– depth of directory: global depth
– depth of each bucket: local depth (WHY KEEP?)

00 overflows split

new

01
10
11

000
001
010
011
100
101
110
111

2 2

2

2

2

3 3

2

2

2

3

9

Rule of bucket splitting
• On bucket m overflow:

– If depth(directory) > depth(bucket m)
• Split bucket m into bucket m and bucket m+2depth(m)

• Update depth buckets m and m+2depth(m)

• Update pointers for all directory entries pointing to m

– If depth(directory) = depth(bucket m)
• Split bucket m into bucket m and bucket m+2depth(m)

• Update depth buckets m and m+2depth(m)

• Copy directory and update depth(directory)
• Change pointer of directory entry m+2depth(m)

4

10

Extendible hashing observations

• Splitting bucket does not always evenly
distribute contents
– hi(x) may equal hi+1(x), hi+2(x), …

• May need to split bucket several times
– NOT: global depth – min(local depth) = 1

• Can accept some overflow pages or split
aggressively

• If h(x) = h(y) always same bucket
– cannot avoid overflow if too many of these!

11

Example bad bucket overflow

Bucket:

h(key) mod 22 = 1
h(key) mod 23 = 5
If add new entry with h(key)= 37 then h(key) mod 23 = 5
=>splitting once not enough
Need depth 4 directory

2

5, 13, 21, 29

4

5, 21, 37
4

13, 29
0101

1101

…

12

Linear Hashing

• Goal: get rid of directory of extendible
• Compromise:

will tolerate overflow pages temporarily
• Idea:

– Use same family of hash functions (mod 2b+i)
– When bucket overflows split some bucket
– Split buckets in order
– Eventually bucket with overflow pages will get

turn to split

5

13

Linear hashing details

• Have rounds of
splitting: top to
bottom
– level

• Start new round
when bottom
bucket has split

• Next bucket
splits when some
criterion triggers

• Not shown: any
bucket can have
overflow pages

Buckets - ordered

Next
To
split

…

…

bottom

…

Buckets
already split:
Use hlevel+1

Use hlevel

Other halves of
split buckets:
Use hlevel+1

top

14

Linear hashing: more details
• Splitting criterion flexible

– Basic: every time add overflow page
– Alternate: every time bucket first overflows

• No directory => hash indexes buckets directly
– Sequentially stored

• # buckets at level 0 need not be a power of 2
– Values top, bottom suffice
– hi must be consistent with number buckets at level=i

• Is true every bucket at beginning of round has
split by end of round

• Is NOT true no overflow at end of round

15

Board Example

6

16

Compare: Extendible vs Linear
• Extendible

– Split actual bucket need to split
– Need directory to tell where new bucket is
– Duplicate directory cheaper

• Linear
– No directory
– Must keep buckets linearly ordered

• Array access: calculate bucket location from hash
– Relying on aggregation of splits over time to

reduce overflow pages

17

Costs

• Look up: # pages accessed
– Extendible hash: = 1 + 1 + (# overflow pages)

• Assumes directory on disk
• Almost no overflow pages with good hash function and

aggressive splitting.
– Linear hash: = 1 + (# overflow pages)

• Insert with overflow:
– Extendible

• Copy directory (# disk pages?)
• Splitting once may not be enough

– Linear
• Follow overflow links
• Split one bucket (assuming criterion met)

