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Figure 1: A probabilistic model (Problem 1a).

(a) Illustrate your use of the Bayes ball algorithm to determine whether the fol-
lowing conditional independencies hold in the probabilistic model depicted
in Figure 1.

i.) (X3 ⊥⊥ X7)

ii.) (X3 ⊥⊥ X7) |X4

iii.) (X3 ⊥⊥ X5)

iv.) (X3 ⊥⊥ X5) |X7
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Figure 2: Another probabilistic model (Problem 1b).
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(b) Suppose we are interested in inferring P (X1, X2, X3 |Y 1, Y 2, Y 3) in Fig-
ure 2. Use the Bayes Ball algorithm and properties of conditional indepen-
dence to formally determine whether the Z nodes affect the inference. If
we knew a priori that the Z nodes are never going to be observed, would
it make sense to replace the above probabilistic model with a simpler one?
How does this idea generalize to arbitrary probabilistic models?

(c) Let G be a probabilistic model. Let Xn be a node in G. Use the Bayes Ball
algorithm to prove that P (Xn|X−n) = P (Xn|MB(Xn)) where X−n denotes
all nodes of G except Xn and MB(Xn) denotes the Markov blanket of Xn.

Why is this equality significant for Gibbs sampling?

Problem 2
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Figure 3: Query link structure (Problem 2).

Once upon a time, two guys came up with an algorithm for ranking the
results of a web search query. The figure above shows a set of webpages related
to a particular query. Each node represents a webpage and every edge represents
a link. As mentioned in class, the idea behind this algorithm is that webpages
are ranked based on the stationary distribution of the Markov chain defined by
a random websurfer walking on the graph and randomly jumping to a new page.

(a) Suppose that the probability of of transitioning from a webpage X to an-
other Y is:

q(X → Y ) =
{ p

|X|out
+ ε if there is a link between X and Y

ε otherwise
(1)

2



where |X|out denotes the out-degree of X and p and ε are constants and p
is between 0 and 1.

Determine ε as a function of p and the number of webpages, n, keeping in
mind that every column of the transition matrix must sum to 1.

(b) Assuming that p = 0.9, determine the transition probabilities from webpage
D using what you derived in (a).

(c) Now’s your chance to be a billionaire. The smart people at gloogle.com
have noticed that each person seems to have a set of website preferences
πX . These preferences satisfy ∑

X

πX = 1 (2)

You’ve come up with the following equation for transition probabilities in-
corporating preferences.

q(X → Y ) =
{ p

|X|out
+ επY if there is a link between X and Y

επY otherwise
(3)

Now what is the expression for ε?

(d) Now recompute the transition probabilities from webpage D using part (c).
The preference for each page will be assigned according to the domain in
which it belongs:

Domain Ranking
hyahoo.com .05

cuteo.com .1
ml.net .1

gloogle.com .2

(e) (Extra Credit) Find the stationary distribution of the Markov chain defined
by the transition matrix, Q. The stationary distribution can be determined
by simply computing Q∞ (or a reasonable approximation thereof).

Problem 3

Consider the noisy observation model pictured in Figure 4. Recall that the
forward messages are

f1:t := p(xt | e1:t), (4)

and backward messages are

bk+1:t := p(ek+1:t |xk). (5)
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Figure 4: The noisy observation model (Problem 3).

The smoothing problem is to compute

gk := p(xk | e1:T ). (6)

In class, we described how to solve the filtering problem by using the forward
messages to k and the backward messages from k. In this problem, we are
interested in solving the smoothing problem gk for all k from 1 to T .

(a) Derive a recursion for computing gk in terms of gk+1 and the forward mes-
sages. (Hint: include and marginalize xk+1.)

(b) What is the time and space complexity of this algorithm for computing gk

for all k.

(c) What are the advantages, if any, of this algorithm versus näıvely running
the forward/backward algorithm for each gk?
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