Problem 1

Figure 1: A probabilistic model (Problem 1a).

(a) lustrate your use of the Bayes ball algorithm to determine whether the fol-
lowing conditional independencies hold in the probabilistic model depicted
in Figure 1.
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Figure 2: Another probabilistic model (Problem 1b).



(b) Suppose we are interested in inferring P(X1, X2, X3|Y1,Y2,Y3) in Fig-
ure 2. Use the Bayes Ball algorithm and properties of conditional indepen-
dence to formally determine whether the Z nodes affect the inference. If
we knew a priori that the Z nodes are never going to be observed, would
it make sense to replace the above probabilistic model with a simpler one?
How does this idea generalize to arbitrary probabilistic models?

(c¢) Let G be a probabilistic model. Let X,, be a node in G. Use the Bayes Ball
algorithm to prove that P(X,|X_,) = P(X,|MB(X,)) where X_,, denotes
all nodes of G except X,, and MB(X,,) denotes the Markov blanket of X,,.

Why is this equality significant for Gibbs sampling?

Problem 2

Figure 3: Query link structure (Problem 2).

Once upon a time, two guys came up with an algorithm for ranking the
results of a web search query. The figure above shows a set of webpages related
to a particular query. Each node represents a webpage and every edge represents
a link. As mentioned in class, the idea behind this algorithm is that webpages
are ranked based on the stationary distribution of the Markov chain defined by
a random websurfer walking on the graph and randomly jumping to a new page.

(a) Suppose that the probability of of transitioning from a webpage X to an-
other Y is:

\XI% + € if there is a link between X and YV

X—-Y)=
IX=Y) {e otherwise

(1)



where |X|out denotes the out-degree of X and p and e are constants and p
is between 0 and 1.

Determine € as a function of p and the number of webpages, n, keeping in
mind that every column of the transition matrix must sum to 1.

(b) Assuming that p = 0.9, determine the transition probabilities from webpage
D using what you derived in (a).

(¢) Now’s your chance to be a billionaire. The smart people at gloogle.com
have noticed that each person seems to have a set of website preferences
mx. These preferences satisfy

Z?‘('le (2)

You’ve come up with the following equation for transition probabilities in-
corporating preferences.

\XI% + emy if there is a link between X and Y

(3)

X—-Y)=
(X =Y) {67Ty otherwise

Now what is the expression for €?

(d) Now recompute the transition probabilities from webpage D using part (c).
The preference for each page will be assigned according to the domain in
which it belongs:

’ Domain \ Ranking ‘

hyahoo.com .05
cuteo.com 1
ml.net .1
gloogle.com 2

(e) (Extra Credit) Find the stationary distribution of the Markov chain defined
by the transition matrix, Q. The stationary distribution can be determined
by simply computing Q> (or a reasonable approximation thereof).

Problem 3

Consider the noisy observation model pictured in Figure 4. Recall that the
forward messages are

Jre = p(xe | ery), (4)

and backward messages are

brt1:t == P(€k+1:t ‘ Uﬁk) (5)



Figure 4: The noisy observation model (Problem 3).

The smoothing problem is to compute

gk = p(zk | er.T). (6)

In class, we described how to solve the filtering problem by using the forward
messages to k and the backward messages from k. In this problem, we are
interested in solving the smoothing problem g, for all k from 1 to T'.

(a) Derive a recursion for computing g in terms of giy1 and the forward mes-
sages. (Hint: include and marginalize zj1.)

(b) What is the time and space complexity of this algorithm for computing gy,
for all k.

(¢) What are the advantages, if any, of this algorithm versus naively running
the forward/backward algorithm for each g;?



