Problem 1

Figure 1: A probabilistic model (Problem 1a).

- (a) Illustrate your use of the Bayes ball algorithm to determine whether the following conditional independencies hold in the probabilistic model depicted in Figure 1.
 - i.) $(X3 \perp X7)$
 - ii.) $(X3 \perp X7) \mid X4$
 - iii.) $(X3 \perp X5)$
 - iv.) $(X3 \perp X5) \mid X7$

Figure 2: Another probabilistic model (Problem 1b).

- (b) Suppose we are interested in inferring P(X1, X2, X3 | Y1, Y2, Y3) in Figure 2. Use the Bayes Ball algorithm and properties of conditional independence to formally determine whether the Z nodes affect the inference. If we knew a priori that the Z nodes are never going to be observed, would it make sense to replace the above probabilistic model with a simpler one? How does this idea generalize to arbitrary probabilistic models?
- (c) Let G be a probabilistic model. Let X_n be a node in G. Use the Bayes Ball algorithm to prove that $P(X_n|X_{-n}) = P(X_n|\text{MB}(X_n))$ where X_{-n} denotes all nodes of G except X_n and $\text{MB}(X_n)$ denotes the Markov blanket of X_n . Why is this equality significant for Gibbs sampling?

Problem 2

Figure 3: Query link structure (Problem 2).

Once upon a time, two guys came up with an algorithm for ranking the results of a web search query. The figure above shows a set of webpages related to a particular query. Each node represents a webpage and every edge represents a link. As mentioned in class, the idea behind this algorithm is that webpages are ranked based on the stationary distribution of the Markov chain defined by a random websurfer walking on the graph and randomly jumping to a new page.

(a) Suppose that the probability of of transitioning from a webpage X to another Y is:

$$q(X \to Y) = \begin{cases} \frac{p}{|X|_{\text{out}}} + \epsilon & \text{if there is a link between } X \text{ and } Y \\ \epsilon & \text{otherwise} \end{cases}$$
(1)

where $|X|_{\text{out}}$ denotes the out-degree of X and p and ϵ are constants and p is between 0 and 1.

Determine ϵ as a function of p and the number of webpages, n, keeping in mind that every column of the transition matrix must sum to 1.

- (b) Assuming that p = 0.9, determine the transition probabilities from webpage D using what you derived in (a).
- (c) Now's your chance to be a billionaire. The smart people at gloogle.com have noticed that each person seems to have a set of website preferences π_X . These preferences satisfy

$$\sum_{X} \pi_X = 1 \tag{2}$$

You've come up with the following equation for transition probabilities incorporating preferences.

$$q(X \to Y) = \begin{cases} \frac{p}{|X|_{\text{out}}} + \epsilon \pi_Y & \text{if there is a link between } X \text{ and } Y \\ \epsilon \pi_Y & \text{otherwise} \end{cases}$$
(3)

Now what is the expression for ϵ ?

(d) Now recompute the transition probabilities from webpage D using part (c). The preference for each page will be assigned according to the domain in which it belongs:

Domain	Ranking
hyahoo.com	.05
cuteo.com	.1
ml.net	.1
gloogle.com	.2

(e) (Extra Credit) Find the stationary distribution of the Markov chain defined by the transition matrix, **Q**. The stationary distribution can be determined by simply computing \mathbf{Q}^{∞} (or a reasonable approximation thereof).

Problem 3

Consider the noisy observation model pictured in Figure 4. Recall that the forward messages are

$$f_{1:t} := p(x_t \mid e_{1:t}), \tag{4}$$

and backward messages are

$$b_{k+1:t} := p(e_{k+1:t} \mid x_k).$$
(5)

Figure 4: The noisy observation model (Problem 3).

The smoothing problem is to compute

$$g_k := p(x_k \,|\, e_{1:T}). \tag{6}$$

In class, we described how to solve the filtering problem by using the forward messages to k and the backward messages from k. In this problem, we are interested in solving the smoothing problem g_k for all k from 1 to T.

- (a) Derive a recursion for computing g_k in terms of g_{k+1} and the forward messages. (Hint: include and marginalize x_{k+1} .)
- (b) What is the time and space complexity of this algorithm for computing g_k for all k.
- (c) What are the advantages, if any, of this algorithm versus naïvely running the forward/backward algorithm for each g_k ?