Problem 1

Figure 1: A probabilistic model (Problem 1a).
(a) Illustrate your use of the Bayes ball algorithm to determine whether the following conditional independencies hold in the probabilistic model depicted in Figure 1.
i.) $(X 3 \Perp X 7)$
ii.) $(X 3 \Perp X 7) \mid X 4$
iii.) $(X 3 \Perp X 5)$
iv.) $(X 3 \Perp X 5) \mid X 7$

Figure 2: Another probabilistic model (Problem 1b).
(b) Suppose we are interested in inferring $P(X 1, X 2, X 3 \mid Y 1, Y 2, Y 3)$ in Figure 2. Use the Bayes Ball algorithm and properties of conditional independence to formally determine whether the Z nodes affect the inference. If we knew a priori that the Z nodes are never going to be observed, would it make sense to replace the above probabilistic model with a simpler one? How does this idea generalize to arbitrary probabilistic models?
(c) Let G be a probabilistic model. Let X_{n} be a node in G. Use the Bayes Ball algorithm to prove that $P\left(X_{n} \mid X_{-n}\right)=P\left(X_{n} \mid \mathrm{MB}\left(X_{n}\right)\right)$ where X_{-n} denotes all nodes of G except X_{n} and $\mathrm{MB}\left(X_{n}\right)$ denotes the Markov blanket of X_{n}.
Why is this equality significant for Gibbs sampling?

Problem 2

Figure 3: Query link structure (Problem 2).

Once upon a time, two guys came up with an algorithm for ranking the results of a web search query. The figure above shows a set of webpages related to a particular query. Each node represents a webpage and every edge represents a link. As mentioned in class, the idea behind this algorithm is that webpages are ranked based on the stationary distribution of the Markov chain defined by a random websurfer walking on the graph and randomly jumping to a new page.
(a) Suppose that the probability of of transitioning from a webpage X to another Y is:

$$
q(X \rightarrow Y)= \begin{cases}\frac{p}{|X|_{\text {out }}}+\epsilon & \text { if there is a link between } X \text { and } Y \tag{1}\\ \epsilon & \text { otherwise }\end{cases}
$$

where $|X|_{\text {out }}$ denotes the out-degree of X and p and ϵ are constants and p is between 0 and 1 .

Determine ϵ as a function of p and the number of webpages, n, keeping in mind that every column of the transition matrix must sum to 1 .
(b) Assuming that $p=0.9$, determine the transition probabilities from webpage D using what you derived in (a).
(c) Now's your chance to be a billionaire. The smart people at gloogle.com have noticed that each person seems to have a set of website preferences π_{X}. These preferences satisfy

$$
\begin{equation*}
\sum_{X} \pi_{X}=1 \tag{2}
\end{equation*}
$$

You've come up with the following equation for transition probabilities incorporating preferences.

$$
q(X \rightarrow Y)= \begin{cases}\frac{p}{|X|_{\text {out }}}+\epsilon \pi_{Y} & \text { if there is a link between } X \text { and } Y \tag{3}\\ \epsilon \pi_{Y} & \text { otherwise }\end{cases}
$$

Now what is the expression for ϵ ?
(d) Now recompute the transition probabilities from webpage D using part (c). The preference for each page will be assigned according to the domain in which it belongs:

Domain	Ranking
hyahoo.com	.05
cuteo.com	.1
ml.net	.1
gloogle.com	.2

(e) (Extra Credit) Find the stationary distribution of the Markov chain defined by the transition matrix, \mathbf{Q}. The stationary distribution can be determined by simply computing \mathbf{Q}^{∞} (or a reasonable approximation thereof).

Problem 3

Consider the noisy observation model pictured in Figure 4. Recall that the forward messages are

$$
\begin{equation*}
f_{1: t}:=p\left(x_{t} \mid e_{1: t}\right), \tag{4}
\end{equation*}
$$

and backward messages are

$$
\begin{equation*}
b_{k+1: t}:=p\left(e_{k+1: t} \mid x_{k}\right) . \tag{5}
\end{equation*}
$$

Figure 4: The noisy observation model (Problem 3).

The smoothing problem is to compute

$$
\begin{equation*}
g_{k}:=p\left(x_{k} \mid e_{1: T}\right) \tag{6}
\end{equation*}
$$

In class, we described how to solve the filtering problem by using the forward messages to k and the backward messages from k. In this problem, we are interested in solving the smoothing problem g_{k} for all k from 1 to T.
(a) Derive a recursion for computing g_{k} in terms of g_{k+1} and the forward messages. (Hint: include and marginalize x_{k+1}.)
(b) What is the time and space complexity of this algorithm for computing g_{k} for all k.
(c) What are the advantages, if any, of this algorithm versus naïvely running the forward/backward algorithm for each g_{k} ?

