
10/04/06

Assignment 2
Non-preemptive scheduling

COS 318 - Operating System

Fall 2006

10/04/06

Main things you need to deal
with

Process Control Block (PCB)
Context Switch procedure
System Call mechanism
Stacks
Synchronization
Inline assembly
Design review requirements

10/04/06

Process Control Block (PCB)

File: kernel.h
What should be in the PCB?
– pid, in_kernel, stack?
– next, previous

What else should goes in PCB?
– Design review.

10/04/06

Context Switch Procedure

How to switch between processes and
threads?
– They must call yield() explicitly.
– Time slice expires. (Preemptive, next

assignment)
Where to save it?
– Stack?
– PCB.

10/04/06

System Call Mechanism

How does a process get services from
the kernel?
– This assignment: special function call - a

“jump table”
– Real stuff: Interrupt/trap mechanism (later

assignments)

10/04/06

System Call Mechanism
(continued)

At runtime, load the address of
kernel_entry() into memory location 0xf00.
How to do that?
– Define this

#define ENTRY_POINT (void(**)(int))0xf00

– Declare the following in syslib.c
void (**entry_point)(int)=ENTRY_POINT

– To load
*entry_point = kernel_entry

10/04/06

System Call Mechanism
(continued)

The following diagram shows the
kernel_entry in the memory

0x1000

kernel_entry()
0xf00

10/04/06

Stacks

How many stacks?
– 2 per process, 1 per thread. Why?

Where to put them in memory?
– Upper limit: 640K (= 0xa0000)
– Suggestion: between 0x10000 and 0x20000
– See memory layout on the next slide

Size of each stack:
– 4KB should be fine.

10/04/06

Memory Layout

BIOS

Kernel and
Processes

Bootblock

Video RAM

0x01000

0x07C00

0xA0000
0xB8000

Stacks

10/04/06

Synchronization

Locks are used by threads
Many threads can try to acquire a lock
– Need to maintain queue of threads waiting for

a lock. (where?)
Lock_acquire()
– 1. Check lock
– 2. Get lock? Great!
– 3. If not, block itself

Lock_init(), Lock_release()

10/04/06

Inline Assembly

See guide on course page
http://linuxassembly.org/articles/rmiyagi-inline-asm.txt (Extended
Asm)
http://linuxassembly.org/resources.html
Google.
Ask us.

To access a C variable in inline assembly
– asm volatile(“statements”:output_regs:input_regs:used_regs);

Examples
– asm volatile(“movl %%esp,%0”:”=q”(cur_running->stack));
– asm volatile(“movl %0,%%esp”::”q”(cur_running->stack));

10/04/06

Design Review Requirements

Please list your plan of actions for the
following:
Process Control Block (PCB)
– What’s in it ?

Context Switch procedure
System Call mechanism
Stacks
Synchronization
– How are locks implemented ?

10/04/06

More hints: 1. Flat Address
Space

The bootblock code switches to protected
mode. It also sets up the CS, DS, and other
segment registers so that you can use the
entire memory using just registers like eax.
Do NOT modify the segment registers.
You have access to the first 1MB of memory
which includes the video-memory
area(0xB8000).
To be safe make sure your code, data, and
stacks reside within the first 640KB of memory.

10/04/06

More hints: 2. Synchronization

The synchronization primitives can only be
used by threads within the kernel.
You will notice that there are two functions
block() and unblock() in the kernel that are to
be used by the synchronization code.
This has been done since blocking a process
is not specific to locks, but is a general
purpose service that the kernel should
support.

