
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Mergesort and Quicksort

Reference: Chapters 7-8, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Mergesort and Quicksort

Two great sorting algorithms.

! Full scientific understanding of their properties has enabled us

to hammer them into practical system sorts.

! Occupies a prominent place in world's computational infrastructure.

! Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort.

! Java sort for objects.

! Perl stable, Python stable.

Quicksort.

! Java sort for primitive types.

! C qsort, Unix, g++, Visual C++, Perl, Python.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Mergesort

4

Mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half.

! Merge two halves to make sorted whole.

5

Mergesort: Example

6

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

A G L O R H I M S T

A G H I L M

for (int k = l; k < r; k++) aux[k] = a[k];

int i = l, j = m;

for (int k = l; k < r; k++) {

 if (i >= m) a[k] = aux[j++];

 else if (j >= r) a[k] = aux[i++];

 else if (less(aux[j], aux[i])) a[k] = aux[j++];

 else if (less(aux[j], aux[i])) a[k] = aux[i++];

}

i j

k

l rm

aux[]

a[]

7

Mergesort: Java Implementation

public class Merge {

 private static void sort(Comparable[] a,

 Comparable[] aux, int l, int r) {

 if (r <= l + 1) return;

 int m = l + (r - l) / 2;

 sort(a, aux, l, m);

 sort(a, aux, m, r);

 merge(a, aux, l, m, r);

 }

 public static void sort(Comparable[] a) {

 Comparable[] aux = new Comparable[a.length];

 sort(a, aux, 0, a.length);

 }

}

l m r

10 11 12 13 14 15 16 17 18 19

8

Mergesort Analysis: Memory

Q. How much memory does mergesort require?

! Original input array = N.

! Auxiliary array for merging = N.

! Local variables: constant.

! Function call stack: log2 N.

! Total = 2N + O(log N).

Q. How much memory do other sorting algorithms require?

! N + O(1) for insertion sort and selection sort.

! In-place = N + O(log N).

Challenge for the bored. In-place merge. [Kronrud, 1969]

9

Mergesort Analysis: Running Time

Def. T(N) = number of comparisons to mergesort an input of size N.

Mergesort recurrence.

Solution. T(N) = O(N log2 N).

! Note: same number of comparisons for any input of size N.

! We prove T(N) = N log2 N when N is a power of 2, and = instead of ".

!

T (N) "

 0 if N =1

T N /2# $()
solve left half

1 2 4 3 4 4
+ T N /2% &()

solve right half

1 2 4 3 4 4
+ N

merging
{

otherwise

'

(
)

*
)

including already sorted

10

Proof by Recursion Tree

!

T (N) =

0 if N =1

2T (N /2)

sorting both halves

1 2 4 3 4
+ N

merging
{

otherwise

"

$

% $

T(N)

T(N/2)T(N/2)

T(N/4)T(N/4)T(N/4) T(N/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2(N/2)

4(N/4)

N/2 (2)

.

.

.

log2N

N log2 N

11

Proof by Induction

Claim. If T(N) satisfies this recurrence, then T(N) = N log2 N.

Pf. [by induction on n]

! Base case: n = 1.

! Inductive hypothesis: T(n) = n log2 n.

! Goal: show that T(2n) = 2n log2 (2n).

!

T (2n) = 2T (n) + 2n

= 2n log2 n + 2n

= 2n log2 (2n)"1() + 2n

= 2n log2 (2n)

assumes N is a power of 2

!

T (N) =

0 if N =1

2T (N /2)

sorting both halves

1 2 4 3 4
+ N

merging
{

otherwise

"

$

% $

12

Mergesort: Practical Improvements

Use sentinel. Two statements in inner loop are array-bounds checking.

Use insertion sort on small subarrays.

! Mergesort has too much overhead for tiny subarrays.

! Cutoff to insertion sort for ! 7 elements.

Stop if already sorted.

! Is biggest element in first half " smallest element in second half?

! Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array. Save time (but not space) by

switching the role of the input and auxiliary array in each recursive call.

13

Sorting Analysis Summary

Running time estimates:

! Home pc executes 108 comparisons/second.

! Supercomputer executes 1012 comparisons/second.

Lesson 1. Good algorithms are better than supercomputers.

computer

home

super

thousand

instant

instant

million

2.8 hours

1 second

billion

317 years

1.6 weeks

Insertion Sort (N2)

thousand

instant

instant

million

1 sec

instant

billion

18 min

instant

Mergesort (N log N)

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Quicksort

Sir Charles Antony Richard Hoare
1980 Turing Award

15

Quicksort

Quicksort.

! Shuffle the array.

! Partition array so that:

– element a[i] is in its final place for some i

– no larger element to the left of i

– no smaller element to the right of i

! Sort each piece recursively.

Q. How do we partition in-place efficiently?

16

Quicksort Partitioning

17

Quicksort Example

18

Quicksort: Java Implementation

public class Quick {

 public static void sort(Comparable[] a) {

 StdRandom.shuffle(a);

 sort(a, 0, a.length - 1);

 }

 private static void sort(Comparable[] a, int l, int r) {

 if (r <= l) return;

 int m = partition(a, l, r);

 sort(a, l, m-1);

 sort(a, m+1, r);

 }

19

Quicksort: Java Implementation

private static int partition(Comparable[] a, int l, int r) {

 int i = l - 1;

 int j = r;

 while(true) {

 while (less(a[++i], a[r]))

 if (i == r) break;

 while (less(a[r], a[--j]))

 if (j == l) break;

 if (i >= j) break;

 exch(a, i, j);

 }

 exch(a, i, r);

 return i;

}

swap with partitioning element

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index where crossing occurs

20

Quicksort Implementation Details

Partitioning in-place. Using a spare array makes partitioning easier, but

is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit

trickier than it might seem.

Staying in bounds. The (i == r) test is redundant, but the (j == l)

test is not.

Preserving randomness. Shuffling is key for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively)

best to stop on elements equal to partitioning element.

21

Quicksort: Performance Characteristics

Worst case. Number of comparisons is quadratic.

! N + (N-1) + (N-2) + … + 1 ! N2 / 2.

! More likely that your computer is struck by lightning.

Caveat. Many textbook implementations go quadratic if input:

! Is sorted.

! Is reverse sorted.

! Has many duplicates.

22

Quicksort: Average Case

Average case running time.

! Roughly 2 N ln N comparisons.

! Assumption: file is randomly shuffled.

Remarks.

! 39% more comparisons than mergesort.

! Faster than mergesort in practice because of lower cost of other

high-frequency instructions.

! Caveat: many textbook implementations have best case N2 if

duplicates, even if randomized!

see next two slides

23

Quicksort: Average Case

Theorem. The average number of comparisons CN to quicksort a

random file of N elements is about 2N ln N.

! The precise recurrence satisfies C0 = C1 = 0 and for N # 2:

! Multiply both sides by N and subtract the same formula for N-1:

! Simplify to:

!

C
N

= N +1+ 1

N
C
k

+ C
N"k()

k=1

N

#

= N +1+ 2

N
C
k"1

k=1

N

#

!

NC
N
" (N "1)C

N"1 = N(N +1) " (N "1)N +2C
N"1

!

NC
N

= (N +1)C
N"1 +2N

24

Quicksort: Average Case

! Divide both sides by N(N+1) to get a telescoping sum:

! Approximate the exact answer by an integral:

! Finally, the desired result:

!

C
N

N +1
=

C
N"1

N
+

2

N +1

=
C
N"2

N "1
+
2

N
+

2

N +1

=
C
N"3

N "2
+

2

N "1
+
2

N
+

2

N +1

= M

=
C
2

3
+ 2

k+1
k=3

N

#

!

C
N

N +1
" 2

k

k=1

N

" 2

k

k=1

N

$ = 2 ln N

!

C
N
" 2(N +1) ln N " 1.39N log2 N.

25

Sorting Analysis Summary

Running time estimates:

! Home pc executes 108 comparisons/second.

! Supercomputer executes 1012 comparisons/second.

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

computer

home

super

thousand

instant

instant

million

2.8 hours

1 second

billion

317 years

1.6 weeks

Insertion Sort (N2)

thousand

instant

instant

million

1 sec

instant

billion

18 min

instant

Mergesort (N log N)

thousand

instant

instant

million

0.3 sec

instant

billion

6 min

instant

Quicksort (N log N)

26

Quicksort: Practical Improvements

Median of sample.

! Best choice of pivot element = median.

! But how would you compute the median?

! Estimate true median by taking median of sample.

Insertion sort small files.

! Even quicksort has too much overhead for tiny files.

! Can delay insertion sort until end.

Optimize parameters.

! Median-of-3 random elements.

! Cutoff to insertion sort for ! 10 elements.

Non-recursive version.

! Use explicit stack.

! Always sort smaller half first.

guarantees O(log N) stack size

! 12/7 N log N comparisons

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

3-Way Quicksort

28

Duplicate Keys

Equal keys. Omnipresent in applications when purpose of sort is to

bring records with equal keys together.

! Sort population by age.

! Finding collinear points.

! Remove duplicates from mailing list.

! Sort job applicants by college attended.

 Typical application.

! Huge file.

! Small number of key values.

29

3-way partitioning. Partition elements into 3 parts:

! Elements between i and j equal to partition element v.

! No larger elements to left of i.

! No smaller elements to right of j.

Dutch national flag problem.

! Not done in practical sorts before mid-1990s.

! Incorporated into Java system sort, C qsort.

3-Way Partitioning

30

Dutch National Flag Problem: Solution

Solution to Dutch national flag problem.

! Partition elements into 4 parts:

– no larger elements to left of i

– no smaller elements to right of j

– equal elements to left of p

– equal elements to right of q

! Afterwards, swap equal keys into center.

All the right properties.

! In-place.

! Not much code.

! Linear if keys are all equal.

! Small overhead if no equal keys.

31

3-way Quicksort: Java Implementation

private static void sort(Comparable[] a, int l, int r) {

 if (r <= l) return;

 int i = l-1, j = r;

 int p = l-1, q = r;

 while(true) {

 while (less(a[++i], a[r])) ;

 while (less(a[r], a[--j])) if (j == l) break;

 if (i >= j) break;

 exch(a, i, j);

 if (eq(a[i], a[r])) exch(a, ++p, i);

 if (eq(a[j], a[r])) exch(a, --q, j);

 }

 exch(a, i, r);

 j = i - 1;

 i = i + 1;

 for (int k = l ; k <= p; k++) exch(a, k, j--);

 for (int k = r-1; k >= q; k--) exch(a, k, i++);

 sort(a, l, j);

 sort(a, i, r);

}

swap equal keys to left or right

swap equal keys back to middle

recursively sort left and right piece

4-way partitioning

32

Duplicate Keys

Theorem. [Sedgewick-Bentley] Quicksort with 3-way partitioning is

optimal for random keys with duplicates.

Pf. Ties cost to entropy. Beyond scope of 226.

Practice. Randomized 3-way quicksort is linear time when many

duplicates. (Try it!)

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Selection

34

Selection

Selection. Find the kth largest element.

! Min: k = 1.

! Max: k = N.

! Median: k = N/2.

Application. Order statistics.

Easy. Min or max with O(N) comparisons; median with O(N log N).

Challenge. O(N) comparisons for any k.

35

Selection

Quick select.

! Partition array so that:

– element a[i] is in its final place for some i

– no larger element to the left of i

– no smaller element to the right of i

! Repeat in one subarray, depending on i.

 public static void select(Comparable[] a, int k) {

 StdRandom.shuffle(a);

 int l = 0;

 int r = a.length - 1;

 while (r > l) {

 int i = partition(a, l, r);

 if (i > k) r = i - 1;

 else if (i < k) l = i + 1;

 else return;

 }

} upon termination, a[k] contains k+1st smallest element

36

Quick-Select Analysis

Property C. Quick-select takes linear time on average.

! Intuitively, each partitioning step roughly splits array in half.

! N + N/2 + N/4 + … < 2N comparisons.

! Formal analysis similar to quicksort analysis proves the average

number of comparisons is

Worst-case. The worst-case is $(N2) comparisons, but as with

quicksort, the random shuffle makes this case extremely unlikely.

!

2N + k ln
N

k

"

$

%

&
' + (N (k) ln

N

N (k

"

$

%

&
'

Ex: (2 + 2 ln 2) N comparisons to find the median

