Shortest Paths

shortest path from Princeton CS department to Einstein's house

Robert Sedgewick and Kevin Wayne . Copyright © 2006 • http://www.Princeton.EDU/~cos226

Brief History

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957). Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming
Bellman (1958). Dynamic programming.
Moore (1959). Routing long-distance telephone calls for Bell Labs.
Dijkstra (1959). Simpler and faster version of Ford's algorithm.

Shortest path problem. Given a weighted digraph, find the shortest directed path from s to t.
cost of path = sum of edge costs in path

Versions.

- Point-to-point, single source, all pairs.
- Nonnegative edge weights, arbitrary weights, Euclidean weights.

Applications

More applications.

- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Subroutine in higher level algorithms.
- Routing of telecommunications messages.
- Approximating piecewise linear functions.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Dijkstra's Algorithm

Edge Relaxation

Valid weights. For all vertices $\mathrm{v}, \pi(\mathrm{v})$ is length of some path from s to v .

Edge relaxation.

- Consider edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$.
- If current path from s to v plus edge $\mathrm{v} \rightarrow \mathrm{w}$ is shorter than current path to w, then update current path to w.

```
if (pi[w] > pi[v] + e.weight)
    pi[w] = pi[v] + e.weight);
    pred[w] = v
}
```


Assumptions.

- Digraph G.
- Single source s.
- Edge weights $c(v, w)$ are nonnegative.

Goal. Find shortest path from s to every other vertex.

Dijkstra's Algorithm

Dijkstra's algorithm. Maintain set of weights $\pi(\mathrm{v})$ and a set of explored vertices S for which $\pi(\mathrm{v})$ is the length shortest $\mathrm{s}-\mathrm{v}$ path.

- Initialize: $S=\{s\}, \pi(s)=0$.
- Repeatedly choose unexplored node w which minimizes:

$$
\pi(w)=\min _{(v, w): v \in S} \pi(v)+c(v, w)
$$

shortest path to some v in explored part

- set pred[w] = v followed by a single edge $e=(v, w)$
- add w to S, and set $\pi(w)=\pi(v)+c(v, w)$

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each vertex v in $\mathrm{S}, \pi(\mathrm{v})$ is the length of shortest $\mathrm{s}-\mathrm{v}$ path.
Pf. (by induction on $|S|$)

- Let w be next vertex added to S.
- $\pi(w)=\pi(v)+c(v, w)$ is length of some $s-v$ path.
- Consider any s-v path P, and let x be first node on path outside S.
- P is already too long as soon as it reaches x by greedy choice.

Shortest Path Tree

50\%
75

100%

Dijkstra's Algorithm: Implementation

Critical step. Choose unexplored node w which minimizes:

$$
\pi(w)=\min _{(v, w): v \in S} \pi(v)+c(v, w)
$$

Brute force implementation. Test all edges $\Rightarrow O(E V)$ time.

Weighted Edge

```
public class Edge {
    public final int source;
    public final int target;
    public final double weight
    public Edge(int v, int w, double weight) {
        this.source = v;
        this.target = w
        this.weight = weight;
    }
    public String toString() {
        return source + "->" + target + " (" + weight + ") ";
    }
}
```

Dijkstra's Algorithm: Implementation

Critical step. Choose unexplored node w which minimizes:

$$
\pi(w)=\min _{(v, w): v \in S} \pi(v)+c(v, w)
$$

Brute force implementation. Test all edges $\Rightarrow O(E V)$ time.

Efficient implementation. Maintain a priority queue of unexplored vertices, prioritized by $\pi(w)$.
Q. How to maintain π ?
A. When exploring v , for each edge $\mathrm{v}->\mathrm{w}$ leaving v , update

$$
\pi(w)=\min \{\pi(w), \pi(v)+c(v, w)\} .
$$

Weighted Digraph

```
public class WeightedDigraph {
    private int v;
    private Sequence<Edge>[] adj
    public WeightedDigraph(int V) {
        this.v = V;
        adj = (Sequence<Edge>[]) new Sequence[V];
        for (int v = 0; v < v; v++)
            adj[v] = new Sequence<Edge> () ;
    }
    public int V() { return V; }
    public void addEdge(Edge e) { adj[e.source].add(e); }
    public Iterable<Edge> adj(int v) { return adj[v]; }
}
```

```
public Dijkstra(WeightedDigraph G, int s) {
    pi = new double[G.V()];
    pred = new Edge[G.V()]
    for (int v = 0; v < G.V(); v++) pi[v] = INFINITY;
```

 IndexMinPQ<Double> pq = new IndexMinPQ<Double>(G.V())
 pi[s] = 0.0;
 pq.insert(s, pi[s]);
 while (!pq.isEmpty())
 int \(\mathrm{v}=\mathrm{pq}\).delMin();
 for (Edge e: G.adj(v)) \{
 int w = e.target;
 if (pi[w] > pi[v] + e.weight)
 \(\mathrm{pi}[\mathrm{w}]=\mathrm{pi}[\mathrm{v}]+\mathrm{e} \cdot\) weight;
 pred \([\mathbf{w}]=\) e;
 if (pq.contains(w)) pq.decrease(w, pi[w]) ;
 else pq.insert(w, pi[w]) ;
 \}
 \}
 \}

Indexed Priority Queue: Array Implementation

Indexed PQ: array implementation.

- Maintain vertex indexed array keys[i].
- Insert key: change keys[i].
- Decrease key: change keys[i].
- Delete min: scan through keys [i] for each item i.
- Maintain a boolean array marked [i] to mark items in the PQ.

Operation	Array	Dijkstra
insert	1	$\times \mathrm{V}$
delete-min	V	$\times \mathrm{V}$
decrease-key	1	$\times \mathrm{E}$
is-empty	1	$\times \mathrm{V}$
contains	1	$\times \mathrm{V}$
total	V^{2}	

Indexed PQ

- Assume items are named 0 to $\mathrm{N}-1$.
- Insert, delete min, test if empty.
- Decrease key, contains.
[PQ ops]
[ST-like ops]
public class IndexMinPQ (indexed priority queue)

void insert(int i, Key key)	add element i with given key
void decrease(int i, Key key)	decrease value of item i
int delMin()	delete and return smallest item
boolean isEmpty()	is the PQ empty?
boolean contains(int i)	does the PQ contain item i?

boolean contains(int i)

$$
\text { does the } P Q \text { contain item i? }
$$

Indexed PQ: binary heap implementation.

- Assume items are named 0 to $\mathrm{N}-1$.
- Store priorities in a binary heap.

How to decrease key of item i? Bubble it up.
How to know which heap node to bubble up? Maintains an extra array qp [i] that stores the heap index of item i.

```
public class IndexMinPQ<Key extends Comparable> {
    private int N
    private int[] pq, qP;
    private Comparable[] keys
    public IndexMinPQ(int MAXN) {
        keys = new Comparable[MAXN + 1];
        pq = new int[MAXN + 1];
        qP = new int[MAXN + 1]
        for (int i = 0; i <= MAXN; i++) qP[i] = -1
    }
    private boolean greater(int i, int j) {
        return keys[pq[i]]. compareTo(keys[pq[j]]) > 0;
    }
    private void exch(int i, int j) {
        int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;
        qP[pq[i]] = i; qP[pq[j]] = j;
    }
```

```
public void insert(int i, Key key)
    N++;
    qP[i] = N;
    pq[N] = i;
    vals[i] = key;
    swim(N);
}
public int delMin() {
    int min = pq[1];
    qP[min] = -1;
    exch(1,N--);
    sink(1);
    return min;
}
public void decrease(int i, Key key)
    keys[i] = key;
    swim(qp[i]);
}
public boolean contains(int i) { return qp[i] != -1; }
```

Dijkstra's Algorithm: Priority Queue Choice

The choice of priority queue matters in Dijkstra's implementation.

- Array: $\Theta\left(V^{2}\right)$.
- Binary heap: $O(E \log \mathrm{~V})$.
- Fibonacci heap: $O(E+V \log V)$.

Best choice depends on sparsity of graph

- 2,000 vertices, 1 million edges. Heap: 2-3x slower.
- 100,000 vertices, 1 million edges. Heap: $500 \times$ faster
. 1 million vertices, 2 million edges. Heap: 10,000x faster.

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap far better for sparse graphs.
- Fibonacci heap best in theory, but not in practice.

Priority first search. Maintain a set of explored vertices S, and grow S by exploring edges with exactly one endpoint leaving S.

DFS. Edge from vertex which was discovered most recently. BFS. Edge from vertex which was discovered least recently. Prim. Edge of minimum weight.
Dijkstra. Edge to vertex which is closest to s.

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.
In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

Edger Dijkstra Turing award 1972

Application: Currency Conversion

Currency conversion. Given currencies and exchange rates, what is best way to convert one ounce of gold to US dollars?
. 1 oz. gold \Rightarrow \$327.25.

- 1 oz. gold $\Rightarrow £ 208.10 \Rightarrow \$ 327.00$. $\quad[208.10 \times 1.5714]$
- 1 oz. gold $\Rightarrow 455.2$ Francs $\Rightarrow 304.39$ Euros $\Rightarrow \$ 327.28$. $\quad[455.2 \times .6677 \times 1.0752]$

Currency	$£$	Euro	\neq	Franc	$\$$	Gold
UK Pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.4599	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.050	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.011574	1.0000	1.3929	455.200
US Dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

Graph formulation.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find path that maximizes product of weights.

Shortest Paths with Negative Weights: Failed Attempts

Dijkstra. Can fail if negative edge weights.

Dijkstra selects vertex 3 immediately after 0 . But shortest path from 0 to 3 is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

Re-weighting. Adding a constant to every edge weight can fail.

Adding 9 to each edge changes the shortest path.

Reduction to shortest path problem.

- Let $\gamma(v, w)$ be exchange rate from currency v to w.
- Let $c(v, w)=-\lg \gamma(v, w)$.
- Shortest path with costs corresponds to best exchange sequence.

Challenge. Solve shortest path problem with negative weights.
$\operatorname{cost}(C)<0$

Shortest Paths: Negative Cost Cycles

Negative cycle. Directed cycle whose sum of edge weights is negative.

Observation. If negative cycle C on path from s to t, then shortest path can be made arbitrarily negative by spinning around cycle; otherwise, there exists a shortest s-t path that is simple.

Dynamic programming algorithm.

- Initialize pi [v] $=\infty$, pi $[\mathrm{s}]=0$.
- Repeat v times: relax each edge e .

```
for (int i = 1; i <= v; i++) { }\leftarrow\mathrm{ phase i
    for (int v = 0; v < G.v(); v++) {
        for (Edge e : G.adj(v)) {
            int w = e.target;
            if (pi[w] > pi[v] + e.weight) {
                pi[w] = pi[v] + e.weight)
                pred[w] = v ;
            }
    }
```


Bellman-Ford-Moore

Observation. If pi [v] doesn't change during phase i, no need to relax any edge leaving v in phase $i+1$.

FIFO implementation. Maintain queue of vertices whose distance changed.

```
be careful to keep at most one copy of each vertex on queue
```

Running time. Still $\Omega(E \mathrm{~V})$ in worst case, but much faster in practice.

Initialize $\operatorname{pi}[\mathrm{v}]=\infty$ and marked $[\mathrm{v}]=$ false for all vertices v .

```
Queue<Integer> q = new Queue<Integer>()
marked[s] = true
pi[s] = 0;
q. enqueue(s)
while (!q.isEmpty(v))
    int v = q.dequeue()
    marked[v] = false;
    for (Edge e : G.adj(v)) {
        int w = e.target;
            if (pi[w] > pi[v] + e.weight) {
            pi[w] = pi[v] + e.weight;
            pred[w] = e;
                (!marked[w]) l
                marked[w] = tru
                q. enqueue (w)
            }
            }
}
```

Arbitrage

Arbitrage. Is there an arbitrage opportunity in currency graph?

- Ex: $\$ 1 \Rightarrow$ 1.3941 Francs $\Rightarrow 0.9308$ Euros $\Rightarrow \$ 1.00084$.
- Is there a negative cost cycle?
- Fastest algorithm very valuable

Algorithm	Worst Case	Best Case	Space
Dijkstra (classic) †	V 2	V 2	E
Dijkstra (heap)			
Dynamic programming		E log V	E
Bellman-Ford ${ }^{\ddagger}$	E V	E V	E
	E V	E	E

\dagger nonnegative costs
\ddagger no negative cycles

Remark 1. Negative weights makes the problem harder. Remark 2. Negative cycles makes the problem intractable.

If negative cycle reachable from s. Bellman-Ford-Moore gets stuck in infinite loop, updating vertices in a cycle.

Finding a negative cycle. If any vertex v is updated in phase v, there exists a negative cycle, and we can trace back pred[v] to find it.

Goal. Identify a negative cycle (reachable from any vertex)
Solution. Add 0-weight edge from artificial source s to each vertex v . Run Bellman-Ford from vertex s.

Shortest/Longest Path in DAG

Shortest path in DAG algorithm.

- Consider vertices v in topological order:
- relax each edge $\mathrm{v} \rightarrow \mathrm{w}$

Theorem. Algorithm computes shortest path in linear time (even if negative edge weights).

