Priority Queues

Reference: Chapter 6, Algorithms in Java, 3™ Edition, Robert Sedgewick.

Robert Sedgewick and Kevin Wayne +

Copyright © 2005 - http://www.Princeton EDU/~cos226

Priority Queue Applications

Applications.

Event-driven simulation.
Numerical computation.
Data compression.
Graph searching.

Computational number theory.

Artificial intelligence.
Statistics.

Operating systems.
Discrete optimization.
Spam filtering.

[customers in a line, colliding particles]
[reducing roundoff error]

[Huffman codes]

[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]

[A* search]

[maintain largest M values in a sequence]
[load balancing, interrupt handling]

[bin packing, scheduling]

[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority Queues

Data. Ttems that can be compared.

Basic operations.

. Insert. } .
defining ops

« Remove largest.

= Copy.
« Create.

« Destroy.
« Testif empty.

generic ops

insert E wap E
insert X wap E X
insert A wep E X A
E A remove largest = X
insert M == E A M
E A remove largest == M
insert P w=p E A p
insert L wap E A P L
E A L remove largest =) P
insert E wp E A L E
E A E remove largest = L
A E remove largest wp E
A remove largest = E

remove largest == A

Priority Queue Client Example

Problem: Find the largest M of a stream of N elements.

« Fraud detection: isolate $$ tral

nsactions.

= File maintenance: find biggest files or directories.

Constraint. Not enough memory to
Solution. Use a priority queue.

sort NlIg N N
elementary PQ MN M
binary heap NlgMm M
best in theory N M

store N elements.

MinPQ<String> pq = new MinPQ<String>() ;

while (!StdIn.isEmpty()) {
String s = StdIn.readString() ;
Pg.insert(s) ;
if (pg.size() > M)
pq.delMin() ;
}

while (!pq.isEmpty())
System.out.println(pg.delMin()) ;

Priority Queue: Elementary Implementations Priority Queue: Unordered Array Implementation

Two elementary implementations.
public class UnorderedPQ<Item extends Comparable> {
insert P P P
unordered array 1 N insertE. [P Q E EPQ
ordered array N 1 delmax (@) |BE E[P
insert X P EX EPX
worst-case asymptotic costs for PQ with N items insert A PEX A 2TEPx

insertM P EXAM AEMPX
delmax(X) [P E M A AEMP

unordered ordered

Challenge. Implement both operations efficiently.

Binary Heap Binary Heap Properties
Heap: Array representation of a heap-ordered complete binary tree. Property A. Largest key is at root.
Binary tree.
« Empty or
« Node with links to left and
right trees. complete tree: Property B. Can use array indices to move through tree.

balanced except « Note: indices start at 1. [1]2]3]4]5 6789 0]

for bottom level

« Parent of node at k is at k/2. [x[T]olels|m[n[alE[r]Aa]T]
« Children of node at k are at 2k and 2k+1.

Heap-ordered binary tree.
= Keys in nodes.
= No smaller than children'’s keys.

Array representation. Property C. Height of N node heap is 1+ [lg NJ.
« Take nodes in level order.
. T . height only increases when
Noegplncﬁlmksneededsmce [Tzl s s e[z e s [o]ulz] N is a power of 2
tree is complete. [x]ITlolels[m|n[ale[r]a]1]

N=16
height = 5

Promotion In a Heap

Scenario. Exactly one node is bigger than its parent.

To eliminate the violation:
« Exchange with its parent.
= Repeat until heap order restored.

private void swim(int k) {
while (k > 1 && less(k/2, k)) {
exch(k, k/2);
k =k/2; X
} parent of node at k is at k/2

Peter principle: node promoted to level
. 4 8
of |nCompeTenCe. X|T|[O|6|S|MIN|A|E[R[A[T|P

Insert

Insert. Add node at end, then promote.

public void insert(Item x) {
pPa[++N] = x;
swim(N) ;

Demotion In a Heap

Scenario. Exactly one node is smaller than a child.

To eliminate the violation:
« Exchange with larger child.
=« Repeat until heap order restored.

©)
K

private void sink (int k) {
while (2*k <= N) {
int j = 2*k;
if (jJ < N && less(j, j+1)) Jj++;
if ('less(k, j)) break; X

exch fk' 3); children of node
k=3, at k are 2k and 2k+1

Power struggle: better subordinate promoted. |57+ i - Z SToTaTe ool T

Remove the Maximum

Remove max. Exchange root with node at end, then demote.

public Item delMax() {
Item max = pq[l];
exch(l, N--);
sink (1) ;
Pq[N+1] = null;
return max;

Binary Heap: Skeleton

public class MaxPQ<Item extends Comparable> {
private Item[] pqg;
private int N;

same as array-based PQ,

public MaxPQ (int maxN) {1}
{1 but allocate one extra element in array

public boolean isEmpty ()

public void insert(Item x) { }

public Item delMax () {1} S

private void swim(int k) { }

private void sink(int k) { } e il oS

private boolean less(int i, int j) { }

private void exch(int i, int j) { } Oy helper functions

Priority Queues Implementation Cost Summary

N 1

ordered array

ordered list N
unordered array 1
1

1

1 1

N N

unordered list N N

worst-case asymptotic costs for PQ with N items

Hopeless challenge. Make all ops O(1). Why hopeless?

Binary Heap Considerations

Minimum oriented priority queue. Replace 1ess () with greater() and
implement greater ().

Array resizing. Add no-arg constructor, and apply repeated doubling.
O(log N) amortized time per op
Immutability of keys. We assume client does not change keys while

they're on the PQ. Best practice: make keys immutable.

Other operations.
« Remove an arbitrary item.
« Change the priority of an item.
=« Can implement using sink () and swim() abstractions, but we defer.

Digression: Heapsort

First pass: build heap. HEAP SORTING

« Insert items into heap, one at at time. s NG
« Or can use faster bottom-up method; see book. ®® ®®I
o
: e e el . @ @s o @1
for (int k = N/2; k >= 1; k--) @@R P@ @G

sink(a, k, N);
TSRPNOAETIHG

E@RrREN E I

Second pass: sort. ®rO@c @2 [s]
« Remove maximum items, one at a time. C;)G®®AE|®
« Leave in array, instead of nulling out. ®DE @ [o]
while (N > 1) { %?é(?é@
exch(a, 1, N--);
sink(a, 1, N); @@ E[H]
} ®a[¢]

AEGHINOPRST

Property D. At most 2 N Ig N comparisons.

Significance of Heapsort

Q. Sort in O(N log N) worst-case without using extra memory?
A. Yes. Heapsort.

Not mergesort? Linear extra space. challenge for bored: in-place merge
Not quicksort? Quadratic time in worst case. challenge for bored: O(N log N)

worst-case quicksort

Heapsort is optimal for both time and space, but:
=« Inner loop longer than quicksort's.
« Makes poor use of cache memory.

Sorting Summary

X X

St
N2/ 2 N2 /2 N never use it

N2/ 2 Nz /2 Nz /2 N exchanges
X X N2/ 2 Nz / 4 N use as cutoff for small N
X N3/2 N3/2 N3/2 with Knuth sequence
X N2/ 2 2N InN NigN fastest in practice
X NigN NligN NligN N log N guarantee, stable
X 2NIgN 2NIgN NIgN Nlog N guarantee, in-place

Key Comparisons

Introsort

Introsort. [David Musser 1997] Run quicksort, but switch over to
heapsort if things are not going well.

Q1. How would you define "not going well" ?
Q2. How would you detect it ?

In the wild: g++ STL uses infrosort.

\

combo of quicksort, heapsort, and insertion

A* Algorithm

Robert Sedgewick and Kevin Wayne -+ Copyright © 2005 - http://www.Princeton.EDU/~cos226

Sam Loyd's 15-Slider Puzzle

15 puzzle.
= Legal move: slide neighboring tile into blank square.
« Challenge: sequence of legal moves to put tiles in increasing order.
» Win $1,000 prize for solution.

415 PUZZL,
}? wPUZ

4

Sam Loyd

http://www.javaonthebrain.com/ java/puzz15/

A* Search of 8-Puzzle Game Tree

Priority first search.
« Basic idea: explore positions in a more intelligent order.
= . Ex 1: number of tiles out of order.
» Ex 2: sum of Manhattan distances + depth.

initial state
Implement A* algorithm with PQ. 5 Rl
75
TT.‘/ 12]3]
6 [1]4]6 4 |46}
75 7[5]8]
112[3 112[3
3 [4] 6 714l6] 5
7[5[8 5[8
[112]3 1 1]2]-
4 [4]6] | 4 {4]2 4[5 2
7[5[8 715 7
[[23{1':?}
4[5[6] [4]5]6
> Phtsiasy ©

27

Breadth First Search of 8-Puzzle Game Tree

initial state oal
123 112]3
1416 4156
71518 7(8
initial state
2
14
715
2 1
14 416
715 7 Il
2 24 1]2]3 1 3
1l4]6 1 al 6 714]6]
71518 715 71518 8]
1376 [2]a 2[4]3 4 11213] 12 112
4 [1ile 1]6 s 416 42 45 7]4]
IHE als 8 7158 7[5 7] 511
2[3]6][213 4 2[4[3] [2]a] J[2]43][2T4T3] [2]4T3] [0]3] T3] 3] J[aJ2l3 23
1 ja)natel 2 el [FTel [1]e13] [r]6]8] [115T6] [1]5Te] [a]6]3] [a]6]®] [a1216] [4]2]6] [2[5]6] [2]5]6
71sI8] 71581175 s8] 71sI8] 715 718] I8 (F1SI8 Fis] (ATs 18] (7Is 181 C17[8 8

goal

Pictures from Sequential and Parallel Algorithms by Berman and Paul.

Slider Puzzle: Unsolvable Instances

Unsolvable instances.

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

1 2 3
4 56
8 7

8-slider invariant. Parity of number of pairs of pieces in reverse order.

3 1 2 3 1 2 3 1

4 5 6 4 5 6

8 7 8 7 8 5

1-3,2-3,7-8 1-3,2-3,7-8 1-3,2-3,7-8,5-8,5-6
odd odd odd

Event-Driven Simulation

Molecular Dynamics Simulation of Hard Spheres

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

Robert Sedgewick and Kevin Wayne +

Time-driven simulation.

Copyright © 2005 - http://www.Princeton EDU/~cos226

Time-Driven Simulation

. Discretize time in quanta of size dt.

« Update the position of each particle after every dt units of time, and

check for overlaps.

« If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

t+dt

o @

t+2dt
(collision detected)

»

T+At
(roll back clock)

Hard sphere model.
= Moving particles interact via elastic collisions with each other,
and with fixed walls.
« Each particle is a sphere with known position, velocity, mass, and radius.
« No other forces are exerted.

temperature, pressure, motion of individual
diffusion constant atoms and molecules

' re
Significance. Relates macroscopic observables to microscopic dynamics.

« Maxwell and Boltzmann: derive distribution of speeds of interacting
molecules as a function of temperature.
= Einstein: explain Browniah motion of pollen grains.

Time-Driven Simulation

Main drawbacks.
« N2 overlap checks per time quantum.
= May miss collisions if d¥ is foo large and colliding particles fail to
overlap when we are looking.
« Simulation is too slow if dt is very small.

t t+dt t+2dt

Event-Driven Simulation

Event-driven simulation.
= Between collisions, particles move in straight-line trajectories.
« Focus only on times when collisions occur.
= Maintain priority queue of collision events, prioritized by time.
« Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s)
according to laws of elastic collisions.

Particle-Particle Collision Prediction

Collision prediction.
« Particle i: radius o, position (rx;, ry;), velocity (vx;, vy;).
- Particle j: radius o, position (rx;, ry;), velocity (vx;, vy;).
= Will particles i and j collide? If so, when?

v, vy,')

(vx;',vy)")
<

x (v, vy;)

Particle-Wall Collision

Collision prediction.
« Particle of radius o at position (rx, ry), moving with velocity (vx, vy).
= Will it collide with a horizontal wall? If so, when?

o ifvy=0
At = 4 (o=ry)/vy if vy <0
(-o-ry)lvy ifvy>0

Collision resolution. (vx', vy') = (vx, -vy).

|

(rx, "):)\\‘\\\\ (vx, vy) (vx, fvy)/___—""

fime =

time = + At

Particle-Particle Collision Prediction

Collision prediction.
« Particle i: radius o, position (rx;, ry;), velocity (vx;, vy;).
- Particle j: radius o, position (rx;, ry;), velocity (vx;, vy;).
= Will particles i and j collide? If so, when?

o if Av-Ar=0
At =1 o ifd <0
Av-Ar + ~d .
- ———————— otherwise
Av-Av

d =(Av-Ary’ - (Av-Av) (Ar-Ar - %) 0=0,+0;

2 2
Av=(Avx, Avy) = (vx;=vx;, vy =vy;) Av - Av = (Avx)"+ (Avy)
Ar - Ar= (Ar)c)2 + (Ary)2

Ar=(Arx, Ary) = (rx;- X, TY; —ryj)
Av - Ar = (Avx)(Arx)+ (Avy)(Ary)

Particle-Particle Collision Prediction

Collision resolution. When two particles collide, how does velocity change?

’

vy, = vx; + Jx/m
!
vy, = vy + Jylm;
’ Newton's second law
vX; = vx; - Jx / m; (momentum form)
r
vy; = vx; = Jylm;

JArx’ Iy = JAry’ 7 - 2m;m; (Av-Ar)
o o o(m;+m;)

Jx =

impulse due to normal force
(conservation of energy, conservation of momentum)

Event-Driven Simulation

Initialization. Fill PQ with all potential particle-wall and

particle-particle collisions.

potential since collision may not happen if
some other collision intervenes

Main loop.

Delete the impending event from PQ (min priority = t).

If the event in no longer valid, ignore it.

Advance all particles to time t, on a straight-line trajectory.
Update the velocities of the colliding particle(s).

Predict future particle-wall and particle-particle collisions involving
the colliding particle(s) and insert events onto PQ.

