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Priority Queues

Reference:  Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.
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Priority Queues

Data.  Items that can be compared.

Basic operations.

! Insert.

! Remove largest.

! Copy.

! Create.

! Destroy.

! Test if empty.

defining ops 

generic ops
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Priority Queue Applications

Applications.

! Event-driven simulation. [customers in a line, colliding particles]

! Numerical computation. [reducing roundoff error]

! Data compression. [Huffman codes]

! Graph searching. [Dijkstra's algorithm, Prim's algorithm]

! Computational number theory. [sum of powers]

! Artificial intelligence. [A* search]

! Statistics. [maintain largest M values in a sequence]

! Operating systems. [load balancing, interrupt handling]

! Discrete optimization. [bin packing, scheduling]

! Spam filtering. [Bayesian spam filter]

Generalizes:  stack, queue, randomized queue.
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Priority Queue Client Example

Problem:  Find the largest M of a stream of N elements.

! Fraud detection:  isolate $$ transactions.

! File maintenance:  find biggest files or directories.

Constraint.  Not enough memory to store N elements.

Solution.  Use a priority queue.

MinPQ<String> pq = new MinPQ<String>();

while(!StdIn.isEmpty()) {

   String s = StdIn.readString();

   pq.insert(s);

   if (pq.size() > M)

      pq.delMin();

}

while (!pq.isEmpty())

   System.out.println(pq.delMin());

sort

Operation

elementary PQ

binary heap

best in theory

N

space

M

M

M

N lg N

time 

M N

N lg M

N
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Priority Queue:  Elementary Implementations

Two elementary implementations.

Challenge.  Implement both operations efficiently.

unordered array

Implementation

ordered array

N

Del Max

1

1

Insert 

N

worst-case asymptotic costs for PQ with N items
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Priority Queue:  Unordered Array Implementation

public class UnorderedPQ<Item extends Comparable> {

   private Item[] pq;  // pq[i] = ith element on PQ

   private int N;      // number of elements on PQ

   public UnorderedPQ(int maxN) {

      pq = (Item[]) new Comparable[maxN];

   }

   public boolean isEmpty() { return N == 0; }

   public void insert(Item x) { pq[N++] = x; }

   public Item delMax() {

      int max = 0;

      for (int i = 1; i < N; i++)

         if (less(max, i)) max = i;

      exch(max, N-1);

      return pq[--N];
   }
}

no generic array creation
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Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

! Empty or

! Node with links to left and

right trees.

Heap-ordered binary tree.

! Keys in nodes.

! No smaller than children’s keys.

Array representation.

! Take nodes in level order.

! No explicit links needed since

tree is complete.
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Binary Heap Properties

Property A.  Largest key is at root.

Property B.  Can use array indices to move through tree.

! Note:  indices start at 1.

! Parent of node at k is at k/2.

! Children of node at k are at 2k and 2k+1.

Property C.  Height of N node heap is 1 + !lg N".

N = 16
height = 5

height only increases when
N is a power of 2
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Promotion In a Heap

Scenario.  Exactly one node is bigger than its parent.

To eliminate the violation:

! Exchange with its parent.

! Repeat until heap order restored.

Peter principle:  node promoted to level

of incompetence.

private void swim(int k) {

   while (k > 1 && less(k/2, k)) {

      exch(k, k/2);

      k = k/2;

   }

}
parent of node at k is at k/2
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Demotion In a Heap

Scenario.  Exactly one node is smaller than a child.

To eliminate the violation:

! Exchange with larger child.

! Repeat until heap order restored.

Power struggle:  better subordinate promoted.

private void sink(int k) {

   while (2*k <= N) {

      int j = 2*k;

      if (j < N && less(j, j+1)) j++;

      if (!less(k, j)) break;

      exch(k, j);

      k = j;

   }

}

children of node
at k are 2k and 2k+1
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Insert

Insert.  Add node at end, then promote.

public void insert(Item x) {

   pq[++N] = x;

   swim(N);

}
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Remove the Maximum

Remove max.  Exchange root with node at end, then demote.

public Item delMax() {

   Item max = pq[1];

   exch(1, N--);

   sink(1);

   pq[N+1] = null;

   return max;

}
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public class MaxPQ<Item extends Comparable> {

   private Item[] pq;

   private int N;

   public MaxPQ(int maxN)   { }

   public boolean isEmpty() { }

   public void insert(Item x) { }

   public Item delMax()       { }

   private void swim(int k) { }

   private void sink(int k) { }

   private boolean less(int i, int j) { }

   private void    exch(int i, int j) { }

}

Binary Heap:  Skeleton

array helper functions

same as array-based PQ,
but allocate one extra element in array

heap helper functions

PQ ops
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Binary Heap Considerations

Minimum oriented priority queue.  Replace less() with greater() and

implement greater().

Array resizing.  Add no-arg constructor, and apply repeated doubling.

Immutability of keys.  We assume client does not change keys while

they're on the PQ.  Best practice:  make keys immutable.

Other operations.

! Remove an arbitrary item.

! Change the priority of an item.

! Can implement using sink() and swim() abstractions, but we defer.

O(log N) amortized time per op
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Priority Queues Implementation Cost Summary

Hopeless challenge.  Make all ops O(1).  Why hopeless?

ordered array

Operation

ordered list

unordered array

unordered list

binary heap

1

Remove Max

1

N

N

lg N

1

Find Max

1

N

N

1

N

Insert 

N

1

1

lg N

worst-case asymptotic costs for PQ with N items
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Digression: Heapsort

First pass:  build heap.

! Insert items into heap, one at at time.

! Or can use faster bottom-up method; see book.

Second pass:  sort.

! Remove maximum items, one at a time.

! Leave in array, instead of nulling out.

Property D.  At most 2 N lg N comparisons.

while (N > 1) {

   exch(a, 1, N--);

   sink(a, 1, N);

}

for (int k = N/2; k >= 1; k--)

   sink(a, k, N);
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Significance of Heapsort

Q.  Sort in O(N log N) worst-case without using extra memory?

A.  Yes.  Heapsort.

Not mergesort?  Linear extra space.

Not quicksort?  Quadratic time in worst case.

Heapsort is optimal for both time and space, but:

! Inner loop longer than quicksort’s.

! Makes poor use of cache memory.

challenge for bored:  in-place merge

challenge for bored:  O(N log N)
worst-case quicksort
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Introsort

Introsort.  [David Musser 1997]  Run quicksort, but switch over to

heapsort if things are not going well.

Q1.  How would you define "not going well" ?

Q2.  How would you detect it ?

In the wild:  g++ STL uses introsort.

combo of quicksort, heapsort, and insertion

23

Sorting Summary

In-Place

Bubble sort X

Selection sort

Insertion sort

Shellsort

Quicksort

Mergesort

Heapsort

X

X

X

X

X

Stable

X

X

X

Worst

N2 / 2

N2 / 2

N2 / 2

N3/2

N2 / 2

N lg N

2 N lg N

Average

N2 / 2

N2 / 2

N2 / 4

N3/2

2N ln N

N lg N

2 N lg N

Best

N

N2 / 2

N

N3/2

N lg N

N lg N

N lg N

Remarks

never use it

N exchanges

use as cutoff for small N

with Knuth sequence

fastest in practice

N log N guarantee, stable

N log N guarantee, in-place

# Key Comparisons
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A* Algorithm
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Sam Loyd's 15-Slider Puzzle

15 puzzle.

! Legal move:  slide neighboring tile into blank square.

! Challenge:  sequence of legal moves to put tiles in increasing order.

! Win $1,000 prize for solution.

http://www.javaonthebrain.com/java/puzz15/

Sam Loyd
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Breadth First Search of 8-Puzzle Game Tree

Pictures from Sequential and Parallel Algorithms by Berman and Paul.
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A* Search of 8-Puzzle Game Tree

Priority first search.

! Basic idea:  explore positions in a more intelligent order.

! Ex 1: number of tiles out of order.

! Ex 2: sum of Manhattan distances + depth.

Implement A* algorithm with PQ.

6 4

3 5

4 2

3 0

4

5
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Slider Puzzle:  Unsolvable Instances

Unsolvable instances.

8-slider invariant.  Parity of number of pairs of pieces in reverse order.

1 2 3

4 5 6

8 7  

3 1 2

4 5 6

8  7

3 1 2

4  6

8 5 7

1-3, 2-3, 7-8 1-3, 2-3, 7-8, 5-8, 5-6

3 1 2

4 5 6

8 7  

1-3, 2-3, 7-8

odd oddodd

1 2 3

5 6 7

9 10 11

4

8

12

13 15 14  
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Event-Driven Simulation
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Molecular Dynamics Simulation of Hard Spheres

Goal.  Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

Hard sphere model.

! Moving particles interact via elastic collisions with each other,

and with fixed walls.

! Each particle is a sphere with known position, velocity, mass, and radius.

! No other forces are exerted.

Significance.  Relates macroscopic observables to microscopic dynamics.

! Maxwell and Boltzmann: derive distribution of speeds of interacting

molecules as a function of temperature.

! Einstein:  explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

 temperature, pressure,
diffusion constant
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Time-Driven Simulation

Time-driven simulation.

! Discretize time in quanta of size dt.

!  Update the position of each particle after every dt units of time, and

check for overlaps.

! If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + #t
(roll back clock)
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Time-Driven Simulation

Main drawbacks.

! N2 overlap checks per time quantum.

! May miss collisions if dt is too large and colliding particles fail to

overlap when we are looking.

! Simulation is too slow if dt is very small.

t t + dt t + 2 dt
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Event-Driven Simulation

Event-driven simulation.

! Between collisions, particles move in straight-line trajectories.

! Focus only on times when collisions occur.

! Maintain priority queue of collision events, prioritized by time.

! Remove the minimum = get next collision.

Collision prediction.  Given position, velocity, and radius of a particle,

when will it collide next with a wall or another particle?

Collision resolution.  If collision occurs, update colliding particle(s)

according to laws of elastic collisions.
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Particle-Wall Collision

Collision prediction.

! Particle of radius $ at position (rx, ry), moving with velocity (vx, vy).

! Will it collide with a horizontal wall?  If so, when?

Collision resolution.  (vx', vy') = (vx, -vy).
! 

"t  =  

 #  if vy = 0

 ($ % ry)/vy  if vy < 0

 (1% $ % ry)/vy  if vy > 0

& 

' 
( 

) 
( 

$

(rx, ry)

time = t

(vx, vy) (vx, -vy)

(rx', ry')

time = t + #t
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Particle-Particle Collision Prediction

Collision prediction.

! Particle i:  radius $i, position (rxi, ryi), velocity (vxi, vyi).

! Particle j:  radius $j, position (rxj, ryj), velocity (vxj, vyj).

! Will particles i and j collide? If so, when?

$j

$i

(rxi , ryi)

time = t

(vxi , vyi )

m i

i

j

(rxi', ryi')

time = t + #t

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

36

Particle-Particle Collision Prediction

Collision prediction.

! Particle i:  radius $i, position (rxi, ryi), velocity (vxi, vyi).

! Particle j:  radius $j, position (rxj, ryj), velocity (vxj, vyj).

! Will particles i and j collide? If so, when?

! 

"t  =  

 #  if "v $"r % 0

 #  if d < 0

 -  
"v $"r  +  d

"v $"v
 otherwise

& 

' 

( ( 

) 

( 
( 

! 

d  = ("v #"r)
2  
$  ("v #"v)  ("r #"r  $  %

2
)

! 

" = " i +" j

! 

"v = ("vx, "vy)  =  (vxi # vx j , vyi # vyj )

! 

"r = ("rx, "ry)  =  (rxi # rx j , ryi # ryj )

! 

"v # "v = ("vx)
2

+  ("vy)
2

! 

"r # "r = ("rx)
2

+  ("ry)
2

! 

"v # "r = ("vx)("rx)+  ("vy)("ry)
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Particle-Particle Collision Prediction

Collision resolution.  When two particles collide, how does velocity change?

! 

vxi
" = vxi  +  Jx / mi

vyi
" = vyi  +  Jy / mi

vx j
" = vx j  #  Jx / mj

vyj
" = vx j  #  Jy / mj

! 

Jx  =  
J "rx

#
,  Jy  =  

J "ry

#
,  J  =  

2mi mj ("v $"r)

#(mi +mj )

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)
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Event-Driven Simulation

Initialization.  Fill PQ with all potential particle-wall and

particle-particle collisions.

Main loop.

! Delete the impending event from PQ (min priority = t).

! If the event in no longer valid, ignore it.

! Advance all particles to time t, on a straight-line trajectory.

! Update the velocities of the colliding particle(s).

! Predict future particle-wall and particle-particle collisions involving

the colliding particle(s) and insert events onto PQ.

potential since collision may not happen if
some other collision intervenes


