
Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Geometric Algorithms

Reference: Chapters 24-25, Algorithms in C, 2nd Edition, Robert Sedgewick.

2

Geometric Algorithms

Applications.

! Data mining.

! VLSI design.

! Computer vision.

! Mathematical models.

! Astronomical simulation.

! Geographic information systems.

! Computer graphics (movies, games, virtual reality).

! Models of physical world (maps, architecture, medical imaging).

History.

! Ancient mathematical foundations.

! Most geometric algorithms less than 25 years old.

Reference: http://www.ics.uci.edu/~eppstein/geom.html

airflow around an aircraft wing

3

Geometric Primitives

Point: two numbers (x, y).

Line: two numbers a and b [ax + by = 1]

Line segment: two points.

Polygon: sequence of points.

Primitive operations.

! Is a point inside a polygon?

! Compare slopes of two lines.

! Distance between two points.

! Do two line segments intersect?

! Given three points p1, p2, p3, is p1-p2-p3 a counterclockwise turn?

Other geometric shapes.

! Triangle, rectangle, circle, sphere, cone, …

! 3D and higher dimensions sometimes more complicated.

any line not through origin

4

Intuition

Warning: intuition may be misleading.

! Humans have spatial intuition in 2D and 3D.

! Computers do not.

! Neither has good intuition in higher dimensions!

Is a given polygon simple?

we think of this algorithm sees this

1 6 5 8 7 2

7 8 6 4 2 1

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 3 20

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

no crossings

5

Polygon Inside, Outside

Jordan curve theorem. [Veblen 1905] Any continuous simple closed

curve cuts the plane in exactly two pieces: the inside and the outside.

Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.

http://www.ics.uci.edu/~eppstein/geom.html

6

 public boolean contains(double x0, double y0) {

 int crossings = 0;

 for (int i = 0; i < N; i++) {

 double slope = (y[i+1] - y[i]) / (x[i+1] - x[i]);

 boolean cond1 = (x[i] <= x0) && (x0 < x[i+1]);

 boolean cond2 = (x[i+1] <= x0) && (x0 < x[i]);

 boolean above = (y0 < slope * (x0 - x[i]) + y[i]);

 if ((cond1 || cond2) && above) crossings++;

 }

 return (crossings % 2 != 0);

 }

!

y =
yi+1 " yi

xi+1 " xi
 (x " xi) + yi

where xi # x # xi+1
!

(xi+1 , yi+1)

!

(xi , yi)

!

(x , y)

Polygon Inside, Outside: Crossing Number

Does line segment intersect ray?

7

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

! Analog of comparisons in sorting.

! Idea: compare slopes.

Lesson. Geometric primitives are tricky to implement.

! Dealing with degenerate cases.

! Coping with floating point precision.

Implementing CCW

c

a

b

yes

b

a

c

no

c

a

b

Yes
(! slope)

c

a

b

???
(collinear)

c

b

a

???
(collinear)

b

a

c

???
(collinear)

8

Implementing CCW

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

! Determinant gives twice area of triangle.

! If area > 0 then a-b-c is counterclockwise.

If area < 0, then a-b-c is clockwise.

If area = 0, then a-b-c are collinear.

!

2 " Area(a, b, c) =

ax ay 1

bx by 1

cx cy 1

= (bx # ax)(cy # ay) # (by # ay)(cx # ax)

> 0

(ax, ay)

< 0

(bx, by)

(cx, cy)

(cx, cy)

(ax, ay)(bx, by)

9

Immutable Point ADT

public final class Point {

 public final int x;

 public final int y;

 public Point(int x, int y) { this.x = x; this.y = y; }

 public double distanceTo(Point q) {

 return Math.hypot(this.x - q.x, this.y - q.y);

 }

 public static int ccw(Point a, Point b, Point c) {

 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);

 if else (area2 < 0) return -1;

 else if (area2 > 0) return +1;

 else if (area2 > 0 return 0;

 }

 public static boolean collinear(Point a, Point b, Point c) {

 return ccw(a, b, c) == 0;

 }

}

10

Convex Hull

11

Convex Hull

A set of points is convex if for any two points p and q in the set,

the line segment pq is completely in the set.

Convex hull. Smallest convex set containing all the points.

Properties.

! "Simplest" shape that approximates set of points.

! Shortest (perimeter) fence surrounding the points.

! Smallest (area) convex polygon enclosing the points.

convex not convex

convex hull

p

q

p

q

12

Mechanical Solution

Mechanical algorithm. Hammer nails perpendicular to plane;

stretch elastic rubber band around points.

http://www.dfanning.com/math_tips/convexhull_1.gif

13

Brute Force

Observation 1. Edges of convex hull of P connect pairs of points in P.

Observation 2. Edge pq is on convex hull if all other points are

counterclockwise of pq.

O(N3) algorithm. For all points p and q in P, check whether pq is

an edge of convex hull.

p

q

each check requires O(N) ccw calculations,
where N is the number of points in P

14

Package Wrap (Jarvis March)

Package wrap.

! Start with point with smallest y-coordinate.

! Rotate sweep line around current point in ccw direction.

! First point hit is on the hull.

! Repeat.

15

Package Wrap (Jarvis March)

Implementation.

! Compute angle between current point and all remaining points.

! Pick smallest angle larger than current angle.

! "(N) per iteration.

16

How Many Points on the Hull?

Parameters.

! N = number of points.

! h = number of points on the hull.

Package wrap running time. "(N h) per iteration.

How many points on hull?

! Worst case: h = N.

! Average case: difficult problems in stochastic geometry.

– in a disc: h = N1/3.

– in a convex polygon with O(1) edges: h = log N.

17

Graham Scan: Example

Graham scan.

! Choose point p with smallest y-coordinate.

! Sort points by polar angle with p to get simple polygon.

! Consider points in order, and discard those that

would create a clockwise turn.

p

18

Graham Scan: Example

Implementation.

! Input: p[1], p[2], …, p[N] are points.

! Output: M and rearrangement so that p[1], ..., p[M] is convex hull.

Running time. O(N log N) for sort and O(N) for rest.

// preprocess so that p[1] has smallest y-coordinate

// sort by angle with p[1]

points[0] = points[N]; // sentinel

int M = 2;

for (int i = 3; i <= N; i++) {

 while (Point.ccw(p[M-1], p[M], p[i]) <= 0) {

 M--;

 }

 M++;

 swap(points, M, i);

}

why?

discard points that would create clockwise turn

add i to putative hull

19

Quick Elimination

Quick elimination.

! Choose a quadrilateral Q or rectangle R with 4 points as corners.

! If point is inside, can eliminate.

– 4 ccw tests for quadrilateral

– 4 comparisons for rectangle

Three-phase algorithm

! Pass through all points to compute R.

! Eliminate points inside R.

! Find convex hull of remaining points.

Practice. Can eliminate almost all points

in linear time.

Q

these
points
eliminated

R

20

Convex Hull Algorithms Costs Summary

t assumes "reasonable" point distribution

Package wrap

Algorithm

Graham scan

Sweep line

Quick elimination

N h

Running Time

N log N

N log N

N t

Quickhull N log N

Best in theory N log h

Mergehull N log N

asymptotic cost to find h-point hull in N-point set

output sensitive running time

21

Convex Hull: Lower Bound

Models of computation.

! Comparison based: compare coordinates.

(impossible to compute convex hull in this model of computation)

! Quadratic decision tree model: compute any quadratic function

of the coordinates and compare against 0.

Theorem. [Andy Yao, 1981] In quadratic decision tree model,

any convex hull algorithm requires #(N log N) ops.
higher degree polynomial tests
don't help either [Ben-Or, 1983]

even if hull points are not required to be
output in counterclockwise order

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y)))

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0

22

Closest Pair of Points

23

Closest Pair of Points

Closest pair. Given N points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

! Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

! Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with "(N2)

distance calculations.

1-D version. O(N log N) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

26

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !N points on each side.

! Conquer: find closest pair in each side recursively.

! Combine: find closest pair with one point in each side.

! Return best of 3 solutions.

12

21
8

L

seems like "(N2)

30$

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $.

! Observation: only need to consider points within $ of line L.

! Sort points in 2$-strip by their y coordinate.

! Only check distances of those within 11 positions in sorted list!

12

21

1

2

3

4
5

6

7

$

L

$ = min(12, 21)

31

Closest Pair of Points

Def. Let si be the point in the 2$-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| % 12, then the distance between

si and sj is at least $.

Pf.

! No two points lie in same !$-by-!$ box.

! Two points at least 2 rows apart

have distance % 2(!$). !

Fact. Still true if we replace 12 with 7.

$

27

29
30

31

28

26

25

$

!$

 2 rows
!$

!$

39

i

j

32

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 Compute separation line L such that half the points

 are on one side and half on the other side.

 $1 = Closest-Pair(left half)

 $2 = Closest-Pair(right half)

 $ = min($1, $2)

 Delete all points further than $ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between

 each point and next 11 neighbors. If any of these

 distances is less than $, update $.

 return $.

}

O(N log N)

2T(N / 2)

O(N)

O(N log N)

O(N)

33

Closest Pair of Points: Analysis

Running time.

Upper bound. Can be improved to O(N log N).

Lower bound. In quadratic decision tree model, any algorithm for

closest pair requires #(N log N) steps.

!

T(N) " 2T N /2() + O(N logN) # T(N) = O(N log
2
N)

avoid sorting by y-coordinate from scratch

34

Nearest Neighbor

35

1854 Cholera Outbreak, Golden Square, London

http://content.answers.com/main/content/wp/en/c/c7/Snow-cholera-map.jpg

36

Nearest Neighbor

Input. N Euclidean points.

Nearest neighbor problem. Given a query point p, which one of original

N points is closest to p?

Brute

Algorithm

Goal

1

Preprocess

N log N

N

Query

log N

37

Voronoi Diagram

Voronoi region. Set of all points closest to a given point.

Voronoi diagram. Planar subdivision delineating Voronoi regions.

Fact. Voronoi edges are perpendicular bisector segments.

Voronoi of 2 points
(perpendicular bisector)

Voronoi of 3 points
(passes through circumcenter)

38

Voronoi Diagram

Voronoi region. Set of all points closest to a given point.

Voronoi diagram. Planar subdivision delineating Voronoi regions.

Fact. Voronoi edges are perpendicular bisector segments.

Quintessential nearest neighbor data structure.

39

Voronoi Diagram: Applications

Toxic waste dump problem. N homes in a region. Where to locate

nuclear power plant so that it is far away from any home as possible?

Path planning. Circular robot must navigate through environment with

N obstacle points. How to minimize risk of bumping into a obstacle?

Reference: J. O'Rourke. Computational Geometry.

looking for largest empty circle
(center must lie on Voronoi diagram)

robot should stay on Voronoi diagram of obstacles

40

Voronoi Diagram: More Applications

Anthropology. Identify influence of clans and chiefdoms on geographic regions.

Astronomy. Identify clusters of stars and clusters of galaxies.

Biology, Ecology, Forestry. Model and analyze plant competition.

Cartography. Piece together satellite photographs into large "mosaic" maps.

Crystallography. Study Wigner-Setiz regions of metallic sodium.

Data visualization. Nearest neighbor interpolation of 2D data.

Finite elements. Generating finite element meshes which avoid small angles.

Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.

Geology. Estimation of ore reserves in a deposit using info from bore holes.

Geo-scientific modeling. Reconstruct 3D geometric figures from points.

Marketing. Model market of US metro area at individual retail store level.

Metallurgy. Modeling "grain growth" in metal films.

Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.

Robotics. Path planning for robot to minimize risk of collision.

Typography. Character recognition, beveled and carved lettering.

Zoology. Model and analyze the territories of animals.

References: http://voronoi.com, http://www.ics.uci.edu/~eppstein/geom.html

41

Scientific Rediscoveries

1644

Year

1850

Descartes

Discoverer

Dirichlet

Astronomy

Discipline

Math

"Heavens"

Name

Dirichlet tesselation

1908

1909

Voronoi

Boldyrev

Math

Geology

Voronoi diagram

area of influence polygons

1911

1927

Thiessen

Niggli

Meteorology

Crystallography

Thiessen polygons

domains of action

1933

1958

Wigner-Seitz

Frank-Casper

Physics

Physics

Wigner-Seitz regions

atom domains

1965

1966

Brown

Mead

Ecology

Ecology

area of potentially available

plant polygons

1985 Hoofd et al. Anatomy capillary domains

Reference: Kenneth E. Hoff III

42

Fortune's Algorithm

http://www.diku.dk/hjemmesider/studerende/duff/Fortune

43

Fortune's Algorithm

Fortune's algorithm. Sweep-line algorithm can be implemented in

O(N log N) time.

Brute

Algorithm

Fortune

1

Preprocess

N log N

N

Query

log N

but very tricky to get right due to
degeneracy and floating point!

44

Discretized Voronoi

Discretized Voronoi. Solve nearest neighbor problem on an N-by-N grid.

Brute force. For each grid cell, maintain closest point. When adding a

new point to Voronoi, update N2 cells.

45

Hoff's algorithm. Align apex of a right circular cone with sites.

! Minimum envelope of cone intersections projected onto plane is

the Voronoi diagram.

! View cones in different colors & render Voronoi.

Implementation. Draw cones using standard graphics hardware!

Hoff's Algorithm

http://www.cs.unc.edu/~geom/voronoi/siggraph_paper/voronoi.pdf

46

Delaunay Triangulation

Delaunay triangulation. Triangulation of N points such that no point

is inside circumcircle of any other triangle.

Fact 0. It exists and is unique (assuming no degeneracy).

Fact 1. Dual of Voronoi (connect adjacent points in Voronoi diagram).

Fact 2. No edges cross & O(N) edges.

Fact 3. Maximizes the minimum angle for all triangular elements.

Fact 4. Boundary of Delaunay triangulation is convex hull.

Fact 5. Shortest Delaunay edge connects closest pair of points.

Delaunay

Voronoi

47

asymptotic time to solve a 2D problem with N points

convex hull

Problem

closest pair

N2

Brute

N2

furthest pair N2

N log N

Cleverness

N log N

N log N

Delaunay triangulation N4 N log N

polygon triangulation N2 N

Summary

Summary. Many fundamental geometric problems require ingenuity

to solve large instances.

