
Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Directed Graphs

Reference: Chapter 19, Algorithms in Java, 3rd Edition, Robert Sedgewick

2

Directed Graphs

Digraph. Set of objects with oriented pairwise connections.

Ex. One-way street, hyperlink.

3

Digraph Applications

Digraph Vertex Edge

financial stock, currency transaction

transportation street intersection, airport highway, airway route

scheduling task precedence constraint

WordNet synset hypernym

Web web page hyperlink

game board position legal move

telephone person placed call

food web species predator-prey relation

infectious disease person infection

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

4

Ecological Food Web

Food web graph.

! Vertex = species.

! Edge = from prey to predator.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

5

Some Digraph Problems

Transitive closure. Is there a directed path from v to w?

Strong connectivity. Are all vertices mutually reachable?

Topological sort. Can you draw the graph so that all edges point

from left to right?

PERT/CPM. Given a set of tasks with precedence constraints,

what is the earliest that we can complete each task?

Shortest path. Given a weighted graph, find best route from s to t?

PageRank. What is the importance of a web page?

6

Digraph Representation

Vertex names.

! This lecture: use integers between 0 and V-1.

! Real world: convert between names and integers with symbol table.

Orientation of edge matters.

0

6

4

21

5

3

7

12

109

11

8

7

Adjacency Matrix Representation

Adjacency matrix representation.

! Two-dimensional V ! V boolean array.

! Edge v"w in graph: adj[v][w] = true.

0

6

4

21

5

3

7
12

109

11
8

 0 0 1 1 0 0 1 1 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0 0 0 0 0

 4 0 0 0 1 0 0 0 0 0 0 0 0 0

 5 0 0 0 1 1 0 0 0 0 0 0 0 0

 6 0 0 0 0 1 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0 0 0 0 0

 9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

from

to

8

Adjacency List Representation

Adjacency list representation. Vertex indexed array of lists.

0: 5 2 1 6

1:

2:

3:

4: 3

5: 4 3

6: 4

7: 8

8:

9: 10 11 12

10:

11: 12

12:

0

6

4

21

5

3

7
12

109

11
8

9

Adjacency List: Java Implementation

Implementation. Same as Graph, but only insert one copy of each edge.

public class Digraph {

 private int V;

 private Sequence<Integer>[] adj;

 public Digraph(int V) {

 this.V = V;

 adj = (Sequence<Integer>[]) new Sequence[V];

 for (int v = 0; v < V; v++)

 adj[v] = new Sequence<Integer>();

 }

 public void insert(int v, int w) {

 adj[v].add(w);

 }

 public Iterable<Integer> adj(int v) {

 return adj[v];

 }

}

10

Digraph Representations

Digraphs are abstract mathematical objects.

! ADT implementation requires specific representation.

! Efficiency depends on matching algorithms to representations.

Digraphs in practice. # use adjacency list representation

! Bottleneck is iterating over edges leaving v.

! Real world digraphs are sparse.

Representation Space

Adjacency matrix V 2

Adjacency list E + V

Edge from
v to w?

1

outdegree(v)

Iterate over
edges leaving v?

V

outdegree(v)

List of edges E + V E E

E is proportional to V

11

Digraph Search

12

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

13

Depth First Search

Depth first search. Same as for undirected graphs.

Running time. O(E) since each edge examined at most once.

Mark v as visited.

Visit all unmarked vertices w adjacent to v.

DFS (to visit a vertex v)

14

public class DFSearcher {

 private boolean[] marked;

 public DFSearcher(Digraph G, int s) {

 marked = new boolean[G.V()];

 dfs(G, s);

 }

 private void dfs(Digraph G, int v) {

 marked[v] = true;

 for (int w : G.adj(v))

 if (!marked[w]) dfs(G, w);

 }

 public boolean isReachable(int v) { return marked[v]; }

}

Depth First Search

Remark. Same as undirected version, except Digraph instead of Graph.

15

Control Flow Graph

Control-flow graph.

! Vertex = basic block (straight-line program).

! Edge = jump.

Dead code elimination. Find (and remove) code blocks that are

unreachable during execution.

Infinite loop detection. Exit block is unreachable from entry block.

Caveat. Not all infinite loops are detectable.

dead code can arise from compiler optimization
(or careless programmer)

16

Mark-Sweep Garbage Collector

Roots. Objects known to be accessible by program (e.g., stack).

Live objects. Objects that the program could get to by starting at a

root and following a chain of pointers.

Mark-sweep algorithm. [McCarthy, 1960]

! Mark: run DFS from roots to mark live objects.

! Sweep: if object is unmarked, it is garbage, so add to free list.

Extra memory. Uses 1 extra mark bit per object, plus DFS stack.

easy to identify pointers in type-safe language

17

Depth First Search

DFS enables direct solution of simple digraph problems.

! Reachability.

! Cycle detection.

! Topological sort.

! Transitive closure.

! Find path from s to t.

Basis for solving difficult digraph problems.

! Directed Euler path.

! Strong connected components.

18

Breadth First Search

Shortest path. Find the shortest directed path from s to t.

BFS. Analogous to BFS in undirected graphs.

s

t

19

Application: Web Crawler

Web graph. Vertex = website, edge = hyperlink.

Goal. Crawl Internet, starting from some root website.

Solution. BFS with implicit graph.

BFS.

! Start at some root website, say http://www.princeton.edu.

! Maintain a Queue of websites to explore.

! Maintain a SET of discovered websites.

! Dequeue the next website, and enqueue websites to which it links

(provided you haven't done so before).

Q. Why not use DFS?

20

Web Crawler: Java Implementation

Queue<String> q = new Queue<String>();

SET<String> visited = new SET<String>();

String s = "http://www.princeton.edu";

q.enqueue(s);

visited.add(s);

while (!q.isEmpty()) {

 String v = q.dequeue();

 System.out.println(v);

 In in = new In(v);

 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";

 Pattern pattern = Pattern.compile(regexp);

 Matcher matcher = pattern.matcher(input);

 while (matcher.find()) {

 String w = matcher.group();

 if (!visited.contains(w)) {

 visited.add(w);

 q.enqueue(w);

 }

 }

}

read in raw html

search using regular expression

if unvisited, mark as visited
and put on queue

http://xxx.yyy.zzz

start crawling from s

queue of sites to crawl

set of visited sites

21

Transitive Closure

22

Transitive closure. Is there a directed path from v to w?

Transitive Closure

G

Transitive closure

tc[v][w] = 1 iff path from v to w

23

Transitive closure. Is there a directed path from v to w?

Lazy. Run separate DFS for each query.

Eager. Run DFS from every vertex v; store results.

Remark. Directed problem is harder than undirected one.

Open research problem. O(1) query, O(V2) preprocessing time.

Transitive Closure

Method Preprocess

DFS (eager) E V

Query

1

Space

V2

DFS (lazy) 1 E + V E + V

24

Transitive Closure: Java Implementation

public class TransitiveClosure {

 private DFSearcher[] tc;

 public TransitiveClosure(Digraph G) {

 tc = new Reachability[G.V()];

 for (int v = 0; v < G.V(); v++)

 tc[v] = new Reachability(G, v);

 }

 public boolean reachable(int v, int w) {

 return tc[v].isReachable(w);

 }

} is w reachable from v?

Implementation. Use an array of DFSearcher objects.

25

Topological Sort

26

Topological Sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Observation. Not possible if graph has a directed cycle.

27

Application: Scheduling

Scheduling. Given a set of tasks to be completed with precedence

constraints, in what order should we schedule the tasks?

Graph model.

! Create a vertex v for each task.

! Create an edge v"w if task v must precede task w.

! Schedule tasks in topological order.

0. read programming assignment
1. download files
2. write code
…
12. sleep

28

Topological Sort: DFS

Topologically sort a DAG.

! Run DFS.

! Reverse postorder numbering yields a topological sort.

Pf of correctness. When DFS backtracks from a vertex v,

all vertices reachable from v have already been explored.

Running time. O(E + V).

Q. If not a DAG, how would you identify a cycle?

A

D

E

F

H

no back edges in DAG

DFS tree

29

Topological Sort: Java Implementation

public class TopologicalSorter {

 private int count;

 private boolean[] visited;

 private int[] ts;

 public TopologicalSorter(Digraph G) {

 visited = new boolean[G.V()];

 ts = new int[G.V()];

 count = G.V();

 for (int v = 0; v < G.V(); v++)

 if (!visited[v]) tsort(G, v);

 }

 private void tsort(Digraph G, int v) {

 visited[v] = true;

 for (int w : G.adj(v))

 if (!visited[w]) tsort(G, w);

 }

 ts[--count] = v;

 }

}
assign numbers in reverse DFS postorder

30

Topological Sort: Applications

Topological sort applications.

! Causalities.

! Compilation units.

! Class inheritance.

! Course prerequisites.

! Deadlocking detection.

! Temporal dependencies.

! Pipeline of computing jobs.

! Check for symbolic link loop.

! Evaluate formula in spreadsheet.

31

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM.

! Task v takes time[v] units of time.

! Can work on jobs in parallel.

! Precedence constraints: must finish

task v before beginning task w.

! What's earliest we can finish each task?

index time prereq

A 0 -

task

begin

B 4 Aframing

C 2 Broofing

D 6 Bsiding

E 5 Dwindows

F 3 Dplumbing

G 4 C, Eelectricity

H 6 C, Epaint

I 0 F, Hfinish

A B C G H

D

E

F

I

4

6

2

5

3

4 60 0time[v]

32

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

! Compute topological order of vertices.

! Initialize fin[v] = 0 for all vertices v.

! Consider vertices v in topological order.

– for each edge v"w, set fin[w]= max(fin[w], fin[v] + time[w])

A B C G H

D

E

F

I

4

6

2

5

3

4 60 0time[v]

4 6 19 250 25

13

10

15

critical path

fin[v]

33

Strongly Connected Components

34

Terminology

35

Strong Components

Def. Vertices v and w are strongly connected if there is a path

from v to w and a path from w to v.

Properties. Symmetric, transitive, reflexive.

Strong component. Maximal subset of strongly connected vertices.

Brute force. O(EV) time using transitive closure.

36

Computing Strongly Connected Components

Observation 1. If you run DFS from a vertex in sink strong component,

all reachable vertices constitute a strong component.

Observation 2. If you run DFS on G, the node with the highest postorder

number is in source strong component.

Observation 3. If you run DFS on GR, the node with the highest

postorder number is in sink strong component.

0 2 3

4 5 6

1
 9 10

11 12

7 8

in order of completion
of recursive calls

kernel DAG

sink

37

Kosaraju's algorithm.

! Run DFS on GR and compute postorder.

! Run DFS on G, considering vertices in reverse postorder.

Theorem. Trees in second DFS are strong components. (!)

Kosaraju's Algorithm

38

Ecological Food Web

Ecological food web.

! Vertex = species.

! Edge = from producer to consumer.

! Strong component = subset of species for which energy flows

from one another and back.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

