
Princeton University
COS 217: Introduction to Programming Systems

The Meminfo Tool

What is it?

Meminfo is a tool to help you analyze your application’s dynamic memory management.
In particular, it can help you find memory leaks and multiple frees. It may help you find
other dynamic memory management errors as well. It was written by RJ Liljestrom, a
recent COS 217 student, building upon an earlier tool named memstat written by Bob
Dondero.

How do I use it?

Suppose you wish to use the meminfo tool to help you debug an application named
myapp. Further suppose that myapp consists of source code files mysourcecode1.c and
mysourcecode2.c. Follow these steps:

(1) Set the PATH environment variable so it includes directory
/u/cos217/bin/i686/meminfo. Using the bash shell, you do that by issuing the command:

export PATH=/u/cos217/bin/i686/meminfo:$PATH

Note that the file /u/cos217/.bashrc contains that command; if you are using the bash
shell and you have copied the /u/cos217/.bashrc file to your home directory, then you
need not manually issue the command. You can confirm that the PATH environment
variable contains directory /u/cos217/bin/i686/meminfo by examining the output of the
printenv command.

(2) Use the gccmeminfo (instead of the gcc) command to preprocess, compile, and
assemble mysourcecode1.c and mysourcecode2.c:

gccmeminfo –Wall –ansi –pedantic –c mysourcecode1.c
gccmeminfo –Wall –ansi –pedantic –c mysourcecode2.c

(3) Use the gccmeminfo (instead of the gcc) command to link mysourcecode1.o and
mysourcecode2.o, thus creating executable file myapp:

gccmeminfo –o myapp mysourcecode1.o mysourcecode2.o

Note that steps 2 and 3 can be combined by issuing a single command:

gccmeminfo –Wall –ansi –pedantic –o myapp mysourcecode1.c mysourcecode2.c

Page 1 of 4

(4) Execute myapp as usual, by typing its name (and command-line arguments, as
appropriate):

myapp arg1 arg2 ...

Doing so generates a text file in the current directory named meminfoX.out, where X is
the id of the process in which myapp executed.

(5) Use the ls command to determine the name of the meminfoX.out file.

(6) Optionally, use a text editor to examine the meminfoX.out file:

xemacs meminfoX.out

Note that the file contains one line for each call to malloc(), calloc(), realloc(), and free()
performed by process X.

(7) Use the meminforeport program to generate (to stdout) a summary report of
meminfoX.out, and thus of process X’s dynamic memory management:

meminforeport meminfoX.out

The report consists of three sections. The first section is entitled "Errors." It contains
error messages describing allocated-but-not-freed memory, and corrupted memory
chunks. The "Errors" section should contain no messages. If it does contain messages,
then your program certainly contains the dynamic memory management errors described.

The second section is entitled "Summary Statistics." It shows the maximum bytes
allocated at any one time by the application, and the total number of bytes allocated by
the application.

The third section is entitled "Statistics by Line." It shows the number of bytes allocated
and freed on a line-by-line basis. A positive number indicates a memory allocation; a
negative number indicates a memory free. The section ends with a total, indicating the
total number of bytes allocated/freed by all lines. The total should be 0.

The fourth section is entitled "Statistics by Compilation Unit." It shows the total number
of bytes allocated/freed by each compilation unit, where a compilation unit is a .c file
along with all files that it #includes. The section ends with a total, indicating the total
number of bytes allocated/freed by all compilation units. The total should be 0.

If the total number of bytes allocated/freed by all lines or compilation units is not 0, then
your application contains a dynamic memory management error. A positive total
indicates memory leaks. In that case you should analyze the more detailed information in
the report to help you determine which dynamically allocated memory is not being freed.
A negative total indicates multiple frees of the same memory chunk. In that case you

Page 2 of 4

should analyze the more detailed information in the report to help you determine which
dynamically allocated memory is being freed more than once.

Incidentally, use the -s option:

meminforeport -s meminfoX.out

to generate a one-line summary report that shows only the total net byte count and the
number of errors.

How does it work?

The code that comprises meminfo is available in directory /u/cos217/bin/i686/meminfo.
Please study it. Specifically, directory /u/cos217/bin/i686/meminfo contains these files:

meminfo.h

meminfo.h is the header file for the meminfo utility. The gccmeminfo command
automatically includes meminfo.h into each .c file that it preprocesses.

meminfo.h declares functions Meminfo_malloc(), Meminfo_calloc(),
Meminfo_realloc(), and Meminfo_free(). It also uses the C preprocessor to alter
your .c files so each instance of the text "malloc" is changed to
"Meminfo_malloc", each instance of "calloc" is changed to "Meminfo_calloc",
each instance of "realloc" is changed to "Meminfo_realloc", and each instance of
"free" is changed to "Meminfo_free". In that way, the meminfo tool "intercepts"
your program’s calls to C’s standard dynamic memory management functions.

meminfo.c

meminfo.c contains the definitions of the Meminfo_malloc(), Meminfo_calloc(),
Meminfo_realloc(), and Meminfo_free() functions.

The first time any of those functions is called, it creates a new file named
meminfoX.out. Subsequently, the function writes a line to meminfoX.out
containing appropriate data: a number indicating which of the four functions has
been called, the name of the file that called the function, the number of the line
that called the function, the address of the memory chunk being affected, and the
number of bytes in the affected memory chunk. It then proceeds to call the
corresponding standard C function.

With one complication... Unknown to your application, the Meminfo_malloc(),
Meminfo_calloc(), and Meminfo_realloc() functions actually allocate a chunk of
memory that is slightly larger than you requested, and store extra information in a
hidden header at the beginning, and a hidden footer at the end of the memory

Page 3 of 4

chunk. The Meminfo_realloc() and Meminfo_free() functions then use that
hidden information to write appropriate data to meminfoX.out.

As a bonus, the Meminfo_free() and Meminfo_realloc() functions write an error
line to meminfoX.out if they discover that the header and footer of the given
memory chunk has been corrupted by the client program.

libmeminfo.a

libmeminfo.a is a UNIX library (alias archive) that contains the compiled version
of meminfo.c. It was created from the meminfo.o file using the command:

ar rs libmeminfo.a meminfo.o

See chapter 4 of our Loukides and Oram textbook for an explanation of UNIX
libraries. Page 102 explains the "ar" command.

gccmeminfo

gccmeminfo is a bash script which calls gcc with appropriate options. It uses the
"-include meminfo.h" option so gcc includes meminfo.h into each .c file that it
preprocesses. It uses the "-L$MEMINFODIR" option to command gcc to look in
directory $MEMINFODIR (that is, /u/cos217/bin/i686/meminfo) for libraries at
link time. It uses the "-lmeminfo" option to command gcc to link with the
libmeminfo.a library.

See page 88 of our Loukides and Oram textbook for more information about the
"–L" and "–l" options to gcc.

meminforeport.c

meminforeport.c contains the source code for the meminforeport program.

Note that it uses an ADT named DynArray. The DynArray ADT is discussed in
precepts. The source code for the DynArray ADT is provided as a precept
handout. Also note that it uses an ADT named PtrTable. The PtrTable ADT is a
hash table whose keys are numbers and whose values are arbitrary objects. It is
similar to the SymTable ADT that often is given as a programming assignment in
COS 217; for that reason, the source code for the PtrTable ADT is not accessible.

meminforeport

meminforeport is the binary executable file created from meminforeport.c.

Copyright © 2006 by Robert M. Dondero, Jr.

Page 4 of 4

	The Meminfo Tool
	How do I use it?
	How does it work?

