/

Goals of Today’s Lecture

Operating Systems
and Protection

Prof. David August

COS 217

/

Operating System

~...:
U‘ m

* How multiple programs can run at once
o Processes
o Context switching
o Process control block
o Virtual memory

* Boundary between parts of the system
o User programs
o Operating system
o Underlying hardware

» Mechanics of handling a page fault
o Page tables
o Process ID registers
o Page faults

/

What is a Process?

:..f
U‘ z.!

e Supports virtual machines

o Promises each process the illusion of having whole

machine to itself

* Provides services:
o Protection
o Scheduling
o Memory management
o File systems
o Synchronization
o etc.

User
Process

User
Process

Operating System

Hardware

A process is a running program with its own ...

o Processor state
— EIP, EFLAGS, registers
o Address space (memory)

— Text, bss, data, heap, stack
» Supporting the abstraction

User
Process

User
Process

o Processor

— Saving state per process
— Context switching

Operating System

o Main memory
— Sharing physical memory
— Supporting virtual memory

Hardware

o Efficiency, fairness, protection

/

\

Divide Hardware into Little Pleces’?

/

Indirection, and Sharing in Time?

i"i
e =)

\

User
Process

User
Process

Operating System

Hardware

* |dea: registers, memory, ALU, etc. per process
o Pro: totally independent operation of each process
o Con: lots of extra hardware;
some parts idle at any given time;
hard limit on the number of processes

>/

/

When to Change Which Process is Running?

\

User
Process

User
Process

Operating System

Hardware

* |dea: swap processes in and out of the CPU;
map references into physical addresses
o Pro: make effective use of the resources by sharing

o Con: overhead of swapping processes;
overhead of mapping memory references

>

/

Life Cycle of a Process

‘??
& 25

3

T)

\

* When a process is stalled waiting for 1/0
o Better utilize the CPU, e.g., while waiting for disk access

CPU /0O CPU I/0 CPU /10

1:
2:

CPU /0O CPU I/0 CPU /10

* When a process has been running for a while

o Sharing on a fine time scale to give each process the
illusion of running on its own machine

o Trade-off efficiency for a finer granularity of fairness

Y

* Running: instructions are being executed
» Waiting: waiting for some event (e.g., /O finish)

* Ready: ready to be assigned to a processor

—

Ready

— (Termination

/

Switching Between Processes

QL‘J

/

Context Switch: What to Save & Load? w

\

Process 2

Process 1

Running montext ‘

i ‘ Load
Waiting i Running
i Save context
- \Loa):onteﬂ | Waiting

Waiting

/

Process Control Block

QL‘H’

e Process state
o New, ready, waiting, halted

» CPU registers
o EIP, EFLAGS, EAX, EBX, ...

¢ 1/O status information
o Open files, I/O requests, ...

* Memory management information
o Page tables

» Accounting information
o Time limits, group ID, ...

* CPU scheduling information
o Priority, queues

/

Sharing Memory

3y

o

B
eaﬂﬂ

» For each process, the OS keeps track of ...

o Process §tate ready
o CPU registers EFE!OF:GS
o CPU scheduling information E@g((
o Memory management information
o Accounting information etc.
o 1/O status information
PCB1
PCB2
PCB3
Process Process Process
, 1’s 2’s 3’s
OS’s memory memory memory memory

oy

* In the old days...
o MS-DOS (1990)
o Original Apple Macintosh (1984)

* Problem: protection
o What prevents process 1 from reading/writing
process 3’'s memory?
o What prevents process 2 from reading/writing
OS’s memory?

* In modern days, Virtual Memory protection
o IBM VM-370 (1970)
o UNIX (1975)
o MS Windows (2000)

Process
3’s

memory

Process
2’s
memory

Process
1’s

memory

PCB1

PCB2

PCB3

0S’s
memory

4 N [

Virtual Memory Virtual Memory for a Process
 Give each process illusion of large address space
o E.g., 32-bit addresses that reference 4 Gig of memory
» Divide the physical memory into fixed-sized pages T
o E.g., 4 Kilobyte pages
» Swap pages between disk and main memory
o Bring in a page when a process accesses the space y
> May require swapping out a page already in memory —
_ "'.“offset in page .
» Keep track of where pages are stored in memory : offset in page
o Maintain a page table for each process to do mapping . i
. "virtual physical
» Treat address as page number and offset in page page number page number
o High-order bits refer to the page 0 _
o Low-order bits refer to the offset in the page 13) Virtual Address Space Physical Address Space 14)
4 N)
Virtual Memory) %: | | Page Tables) A
: 3 6
2
W10 Process 5 0
‘‘‘‘‘‘‘‘ Number
2 e T 2
............................... ilo i 0
..:::5:- 4
L[e i . 1 0 5 ,
...................................... ...o,.’ .:: - O 3
0 ‘‘‘‘‘‘ . O
”.‘0,.. ----- 1 1
Process 1 Virtual 1 e e Process 2 Virtual 1 2
Address Space H— 1 Address Space 1
0 1 0 11
Process 2 Virtual 0 0 Process 1 Virtual 0 0 0
Address Space Physical Address Space Physical
OS Address Space 15) OS Address Space 15)

\/ AS \/ AS

4 N [
Page Tables Reside in Memory... Process ID Register)
6 . 6
2 2
5
2
1 2
1
1
0 0 6
0
U Process 2
Process 2 Virtual Process ID
Address Space 1
) address _
Process 1 Virtual 0 Virtu;i offset in page
Address Space Shveics page number Physical
OS Address Space 17) Address Space 18)
VAS
4 4
Protection Between Processes Paging
3 3
2 2 2 ZAN
5 » User-mode (unprivileged) XX
1 2 1 process cannot modify 1 o[1
- Process ID register 1 =
0 0| 0 U 2
« If page tables are set up 3
Process 2 correctly, process #1 can Process 2 , 1
Process 1D access only its own pages Process 1D
in physical memory 1
address ﬂm . *The operating system sets address mm .
virtual Pag up the page tables virtual Pag 0
page number page number Physical
19) Address Space 20)

-

Page Fault!

-

2

1 2| 7
1 —

0 0|

Process 2

Process 1D

2

1 2| 7
1 —

0 0]

Process 2

Process 1D

yy-
2

..
......
.

1 1
[(I
movl 0002104, %eax 0 movl 0002104, %eax 0
Physical Physical
Address Space 21) Address Space 22)
4 N [N
Fetch Current Page, Adjust Page Tables Measuring the Memory Usage
- Virtual memory usage
T Physical memory usage (“resident set size”)
2 2 Unix CPL‘J time used by this process so far
& % ps I |
1 2 = 1 F UID PID PPID PRI VSz RSS STAT TIME COMMAND
4 0 115 7264 7262 17 4716 1400 SN 0:00 -csh
1 T 0 115 7290 7264 17 15380 10940 SN 5:52 emacs
0 0 ~ 6 0 0 115 3283 7264 23 2864 812 RN 0:00 ps 1
0 ’ = ; ol
E -lo|x
ProceSS 2 1 WindOWS Fle Opfions View de : _y,
2 Applications PFDEESSES | Performance |I
PrOCGSS ID tmage Nams | P ceu CPU‘ Tlf’na wiem Us... [Pags Fa.. [v Sies |]
S BB R R o e
m 1 EE,%ESSST e i?ég EE Eggggg ifégg 7:% & §§§E |
acrofray.exe 1208 00 0:00:00 5848 K 1,870 2,368 K
movl 0002104, %eax) S B et
Physical e |
Processes: 38 CPU Usage: 0% Mem Lsage: 329780K / 1277168K 4
Address Space 23) 24

7)

4 N\ [)
Context Switch, in More Detalil 2 | | Context Switch, in More Detall
Process 1 Process 2 Process 1
! page fault
Running | Save context | i Waiting Running addl %eax, %GC)‘/
. L movl —8(%ebp), %eax
E : | addl %eax, %ecx
! | Load context | !
Waiting | Running Waiting |
i i Processy II PCB1
! | Save context | ! :
: ; | | Is™ PCB2
] | oy | P8
; oad context I Waitin i ,
Running i g Running Registers 0S’s
| memory
%)
4 N\ [
Context Switch, in More Detail Context Switch, in More Detail
b Gt)
Process 1 Fault-handler hardware Process 1 OS software
Enters privileged mode 5. Pops saved EIP,ESP into
Sets EIP to specific location PCB1
RUNNING | addi weax, tec in operating system RUNNING | add weax, heox O GoPIesrestofregisiersinto
movl —8(%ebp), %eax P 9 movl —8(%ebp), %eax . : .
i system stack in OS memory i 7. Sends instructions to disk
1 addl %eax, %ecx 1 addl %eax, %ecx .
! Pushes old (process 1) EIP ! drive to fetch page
| and ESP on OS stack |
Waiting | Waiting |
[- = |
| - = | R e
! Process — PCB1 ! Process | — —PCB1
| P - | «—
| 1’s — PCB2 | 1’s PCB2
memory — PCB3 memory —— PCB3
H I:L\ , H IZL\ ,
Running Registers | 0SS Running Registers | ©5'S
memory memory

2)

 Abstraction of a “process”
o CPU: a share of CPU resources on a small time scale
o Memory: a complete address space of your own

» OS support for the process abstraction
o CPU: context switch between processes
o Memory: virtual memory (VM) and page replacement
o Files: open/read/write, rather than “move disk head”
o Protection: ensure process access only its own resources

» Hardware support for the process abstraction
o Context switches, and push/pop registers on the stack
o Switch between privileged and unprivileged modes

o Map VM address and process ID to physical memory Y

4 N)
Resuming Some Other Process System call, just another kind of fault
OS software Hardware Process 1
8. Sets process-ID register to 2 12. Pops EIP,ESP into registers
9. Pushes saved EIP,ESP from 13. Switches back to (S%/i\?feegg ilssilulction)
PCB2 onto OS stack unprivileged mode Running nov $4.% P
10. Copies rest of registers from 14. Resumes where process 2 'gt $0’8°ga
PCB2 left off last time } r:lddl O/eaxx Yhecx
11. Executes “return from interrupt” ! ! > 7
instruction |
Waiting |
‘\ﬂ\\‘_(/ i T
ProCess | =0 ——=——"PpCB1 } Proessy I % PCB1
<« i } .
1s — PCB2 | Is™ PCB2
memory | ——— PCB3 memory \g PCB3
— , : ,
Registers OS’s Running Registers 0S’s
memory memory
29) 30)
4)
Summary

