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Fruits of the Genomics Revolution

500 10,000

Number of gene products
targeted by drugs

“Needle in a Haystack”

Estimated 102°° compounds could be made

28 million compounds currently registered (CAS)

Drug company biologists screen up to 1 million
compounds against target using ultra-high throughput
technology

Chemists select 50-100 compounds for follow-up
Chemists work on these compounds, developing new,
more potent compounds

Pharmacologists test compounds for pharmacokinetic and
toxicological profiles

1-2 compounds are selected as potential drugs

Overview of Lecture

¢ Introduction
— Opportunities & Challenges in Drug Discovery
— Computational Approaches

* Receptor-based Computational Methods

¢ Ligand-based Computational Methods

Drug Targets and Mechanisms of Drug Action

Enzymes — inhibitors (reversible, irreversible)
Receptors — agonists and antagonists

Ion Channels — blockers

Transporters — uptake inhibitors

DNA - intercalating agents, minor groove
binders, antisense drugs

How are Most Drugs Discovered ?

By serendipity (propecia, penicillin, etc...)
by structure-activity relationships (most)

n natural products (aspirin, digitalis, taxol)
by rational design (since the 80°s)

by systematic screening (since the 90‘s)




Drug Discovery Cycle Early-Stage Drug Discovery Process
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The Drug Design CyCIe Target Identification & Lead Discovery

Target identification (genetics — molecular biology - bioinformatics) Identify target (e.g., enzyme, receptor, ion channel, transporter)
De novo design requires detailed knowledge of Determine DNA and protein sequence
Target structure determination X-ray and NMR - - -
Homology modelling o limited extend. e Elucidate structt!re ELL fun_ctmn_ of pro‘t‘em .
Homology >50% to be successful. " structure Prove therapeutic concept in animals (“knock-outs”)
. Develop assay for high-throughput molecular screen
O Mass screening and/or directed synthesis program

Substrate Select one or more lead structures
characterisation

Design Cycle (left): Computer based

iy | Piopoged | screening Lead Optimization -> Drug Development
and molecular modeling Automated site Determine 3D structure of target receptor complexed with leads

mapping and - - N
compound Molecular modeling- design and refinement of new leads

modelling Synthesis and biological testing of new leads
Optimization of selectivity, bioavailability, and pharmacokinetics
Pharmaceutical formulation
Preclinical and clinical development
Drug approval and market introduction

Fine tuning, pharmacokinetics,
bioavailablity

compound

lihrg%es
Lead compound discovery and testing
Biological Assays (high through-put
screening)

. ) ) New Strategies in Drug Design
Reasons for Failure in Drug Discovery

Design of inhibitors from structure of substrate (peptidomimetics)
Poor pharmacokinetics (poor ADME profile in
humans, metabolite problems) Computer-aided design of ligands
Receptor-based (Structure-based) design
Ligand-based design

Poor clinical activity (doesn’t work in humans)
Pharmacophore hypotheses

Unacceptable side effects, toxicity (drug, Combinatorial design of ligands
metabolites, poor selectivity)

Virtual screening for desirable properties: drug-like, bioavailal
(e.g., Lipinski's Rule of Five)

Poor market strategy (won't earn revenues, profit)

ADME: Adsorption, Distribution, Metabolism, Excretion




Drug Discovery

1: identify disease
Clinical/Medical Informatics

3: develop adrug to
safely attack disease

Chemoinformatics
Comput. Chem.
Molecular Modeling

2: identify key
disease proteins

Biology
Bioinformatics

Basic Drug Design Strategies

If you DO know the 3D structure of the target receptor

Structure-Based
Desig ]

Build or Find the key that fits the lock

Basic Drug Design Strategies

If you DON'T know the 3D structure of the target recepto

Ligand-Based
Design

—

Infer the lock by inspecting the keys

From Random to Rational Drug Discovery

molecules

252

Basic Drug Design Strategies
If you DON'T know the 3D structure of the target receptor

Homology
Modeling GO »é»\,-.,\/ &

protein of known structural model of
3D structure target protein

Build the lock, then find the key

Integrated Approach

Drug Discovery
Predictive Toxicology

Virtual Screening
Pattern Recognition




Research Paradigm:
Integration of Technologies

Receptor-based Methods

Biology

Computation Compound
libraries

. _ _ Protein Data Bank
Receptor-Based Drug Design and Virtual Screening worldwide repository for the processing and distribution of

3-D biological macromolecular structure data
? :
.—’ O\( YC\@ 1. de novo design
<l

46, (IC50, Ki) 2. Free energy calculations

3. Virtual Screening
(docking & scoring)

Protein-based Design of Combinatorial Libraries

-
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Lead Finding: de novo Design
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Fragments

PROs:
Find molecules fast

CONs:
Combinatorial Explosion

Many Synthetically Unfeasible Molecules 3. Find conformation —
4. Minimize & Score




Predicting binding affinities (energies) Predicting binding free energies

Thermodynamic methods (<20)

Protein-Ligand Interaction
Energies (<50)

Question: Can informatics methods

reliably predict reasonable drug candidates? QSAR, 3D-QSAR (<200)

Standard Error, kJ/mol _
Accurycy

Which molecules do you propose for chemical synthesis? Docking & scoring methods

)

1000 100.

Probably the most challenging issuein #of molecules
pharmaceutical computational chemistry

Free Energy Scoring: Predicting binding affinities Key Steps in Ligand-Receptor Binding
predict the binding affinity of aligand for its host protein
from the 3D-structure of the protein-ligand complex ?

Ligand

Gbmdlng RT.log

Displaced H,0

Equilibrium
Temperature  dissociation
constant

Binding free energy
gasconstant X
Affinity: AG = AH -TAS
Upon complex formation:

AGhmdmg = f (Interactions) + water molecules are released

+ receptor and ligand loose degrees of freedom

« interactions between ligand and receptor

complication: mutual compensation of enthalpy and entropy

Thermodynamics of Ligand-Receptor Binding

Thermodynamics of Ligand-Receptor Binding

Ligand (aq) + Receptor (ag)  Ligand-Receptor (aq)
AG = AH —T(AS) AG = AH — T(AS)

Dictum: AG must be negative for spontaneous process Dictum: AG must be negative for spontaneous process

Multi-Step Process AH AS

ligand desolvation unfavorable favorable
always always spontaneous
never never spontaneous receptor desolvation unfavorable favorable
if T(AS) > AH favorable as T ¢
if T(AS) < AH favorable as T}, drug adopts binding conformation typically unfavorable unfavorable

receptor adopts binding conformation unfavorable unfavorable

ligand binds to receptor hopefully favorable unfavorable




But How??

ize unfavorable desolvation enthalpy
and can’t be too hydrophilic
Ligand can’t have too many H-bonding atoms/groups

Maximize favorable desolvation entropy
Ligand should fill receptor binding site, to displace all water molecules

ize enthalpy cost to adopt "binding conformation”
Ligand should bind in low-energy conformation
Shape of ligand should correspond to enzyme's transition-state

ize entropy cost to adopt “binding conformation”
Ligand should be fairly rigid, but not too rigid (most drugs are sel igid)
Shape of ligand should complement shape of receptor’s binding site (pre-
assembly concept)

Maximize ligand-receptor binding enthalpy

Hydrophobic surfaces of nd should touch hydrophobic surfaces of receptor

Hydrophilic surfaces of ligand should touch hydrophilic surfaces of receptor
H-bond donors/acceptors of ligand and receptor should be complementary

Interesting Relationship Between AG,ging @Nd Kyinging

(AGo)binding -RT*InKying (- 1.42 kcal/mol) * |°gKbinding
at physiological temp (37°C)

Now consider Ligand A and Ligand B binding to the same receptor.

How do various Ky/K) ratios translate to A(AG) g Values?

AAG)yging = (-1.42 keal/mol) * log(Kg/K,)

(Kg/Ka) A(AG®)binding
10 1.42 kcal/mol
102
103 4.26

Virtual Screening (“docking & scoring) Methods

Virtual Screening High Throughput
mputational Docking & Scoring Screening

Test high-scaring \ e Test al
molecules molecules

Difficult to predict binding affi
45,
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Receptor-Ligand complex

Virtual Screening (VS)

* Need to prioritize the many molecules that cou/d be tested

« Increasingly sophisticated level of filtering to maximize the
numbers of potential leads

“Drugability” considerations

3D substructure searching once possible pharmacophoric
patterns have been identified

Ligand-based VS: Similarity searching (both 2D and 3D)
using initial weak leads

Structure-based VS: Docking once the 3D structure of the
biological target is available (docking & scoring)

Virtual Screening

Rapid computational

mining of small-molecule

databases is central to N

generating new drug leads — EXE=TzriCRN—_. ﬂ ol
site

The algorithms must be 0' 0

able to handle tens of b g

molecu es

==

thousands of molecules ﬂ i s

Requires delicate balance
between speed & accuracy




Virtual Screening (“docking & scoring”)

(1) Docking - What is i

- Why is it of interest to u.
(2) Basic principles

- Rigid vs flexible docking

(3) New approach to the problem
- Knowledge-based flexible docking
- Two-step scoring

Docking & Scoring Problem

¢ Do the molecules bind to each other?

e If yes, what does the ligand-receptor complex
look like? (docking problem)
1

Reproduce the experimental pose of the
ligand within the receptor binding pocket

* How strong is their binding affinity (scoring problem)
1
Hit, Lead

Docking Programs

DOCK
— Developed in Tak Kuntz’s group at UCSF -
http://www.cmpharm.ucsf.edu/kuntz/dock.html
— Shape algorithm
— Recent versions allow for ligand flexibility
GOLD
— Developed at Sheffield University, distributed by CCDC
http://www.ccdc.cam.ac.uk/
— Uses genetic algorithm
— Flexible ligand
FLEXX
— Distributed by Tripos — http://www.tripos.com
— Flexible ligand
FRED
— By OpenEye Scientific — http://www.openeye.com
— Rigid, but able to use multiple, well chosen conformers
— Very fast
AUTODOCK
— Scripps Lab http://www.scripps.edu/pub/olson-web/doc/autodock,
— Uses Genetic Algorithm
LIGANDFIT
— Accelrys http://www.accelrys.com/cerius2/c2ligandfit.html

Docking: what is it?

Given two molecules with 3D conformations in atomic detail

Do the molecules bind to each other?

If yes, what does the molecule/molecule complex look
like (docking problem)?

Drug Discovery

Docking Methodology: Evaluation

Evaluation of different methods:
* Gold: genetic algorithm

* FlexX: incremental docking

* Dock: fast shape matching

Docking results for 10 ligands of thymidine kinase

were compared with the known complex structures

Best results for Gold,
which finds a solution
for all 10 ligands

Active ligand

Rigid vs Flexible Docking Methods

Rigid Docking

Flexible Docking




Docking algorithms

Require 3D atomic structure for protein, and 3D structure
for compound (“ligand”)

May require initial rough positioning for the ligand

Will use an optimization method to try and find the best
rotation and translation of the ligand in the protein, for
optimal binding affinity

Sample GOLD output

GMP into RNaseT1

FlexX

e Publicly available at
md.de/flexx

GOLD algorithm

Uses a genetic algorithm for optimization

Can output multiple solutions (i.e. output multiple
final population members)

Full ligand and partial protein flexibility

Fitness function combination of four elements:

— protein-ligand hydrogen bond energy (external
H-bond)

— protein-ligand van der Waals (vdw) energy
(external vdw)

— ligand internal vdw energy (/nternal vdw)

— ligand torsional strain energy (/internal torsion)

FRED
Docking is exhaustive

Unlike most docking programs FRED does not use stochastic
sampling to dock ligand. Rather it begins with the set of all possible
orientations (to a resolution of one Angstrom, by default) of each
conformer near the receptor site and selects the docked position of
the Iigand from this set.

Spe:
FRED docks tzglcally docks from 7 to 15 conformers per second on a
single PIII- Mhz CPU

Multi-processor

FRED fully supports PVM (Parallel Virtual Machine) on linux and sgi
platforms. This allows FRED to take advantage of multiple
processors on muliple machines while still returning a single
centralized set of output.

Multiple scoring fuctions

FRED currently supports Chemscore, PLP, ScreenScore and Gaussian
shape scoring. Scoring with ZAP (a PB solver written by OpenEye
Scientific Software) is comming in the near future.

Alternative docking positions for ligands

FRED returns alternative docked poses for each ligand as well as the
top scoring ligand.

Graphic preping of receptor site SW|th VIDA)

FRED is fully functional as a command line program, our
graphics program VIDA has a FRED wizard which can be used to
setup the receptor site for fred.

Docking & Scoring References

Consensus Scoring: A Method for Obtaining Improved
Hit Rates from Docking Databases of Three-Dimensional
Structures into Proteins, Paul S. Charifson, Joseph J.
Corkery, Mark A. Murcko, and W. Patrick Walters, J.
Med. Chem. 1999, 42, 5100-5109

Protein-Based Virtual Screening of Chemical Databases.
1. Evaluation of Different Docking/Scoring
Combinations, Caterina Bissantz, Gerd Folkers, and
Didier Rognan, J. Med. Chem. 2000, 43, 4759-4767




Consensus Opinion

Multiple-Conformation

Rigid or Single-Conformation
Docking/Scoring Methods

Docking/Scoring Methods (GOLD)

Fast, but Accurate, but
Inaccurate 7Too Slow

Docking & Iterative Weight Optimization
/ En;mb\e of ™\

Conformations .
\ n y, m x n docking scores ) Experimental
S Best docking score Binding affinity

Training set of
active compoun
' m

Identify the minimal number of ¢ rmations

Knowledge-based flexible docking with two-step scoring

” Receptor L
structure(s Seltinhigly

i /< d
SNt ibrary
Optimized?

" Active /
[_compoun ds Corr(Exp, Score)

Best score ™
omplex

Knowledge-based Flexible docking with

Preliminary docking
weight optimization two-step scoring

Our Approach: Knowledge-Based
Multiple Conformation Docking

/ Training set
9 5 compounds

300 conformations ( ENSEMbIeof \ | preliminary |15x300 dockings
\Conformations/ Docking

ings

P 6 receptor
Minimal *\conformations

Ensemble/
—

Two-Step Scoring Scheme

Minimal sub-ensemble
of receptor
conformations

Best score Simple scoring function for
complexes fast geometry optimization

Force-field scoring function
with solvation terms for accurate
binding affinity prediction

Example: ERa

- Nuclear hormone receptor superfamily
Associated with numerous diseases:

breast cancer, osteoporosis,
endometrial cancer, prostate hypertrophy Helix 12

- Natural ERa ligand - estrogen
- Xenoestrogens - phytoestrogens, etc.

- Environmental chemicals - pesticides, PCBs, etc.

Demands fast screening methods



' I Multi-Conformation Docking & Scoring Algorithm
- @

Virtual Screening (“docking & scoring) Methods
Yoon & Welsh, J , 44, 88 (2004)
All 19 actiesd oy iainthe i biacites paifdeed Hsighe 115-ranked cmpd
[ |

100

(1) Docking - What is it?

- Why is it of interest to u
(2) Basic principles
- Rigid vs flexible docking
(3) New approach to the problem

Knowledge-based flexible docking
Single Rigid - Two-step scoring

Tiwe hits %

Docking: what is it? Integrated Approach to Drug Discovery

Given two molecules with 3D conformations in atomic detail Virtual Screening

High Throughput
. (Computational Docl
Do the molecules bind to each other?

Screening
If yes, what does the molecule/molecule complex look
like (docking problem)?

!

Goal: Reproduce the experimental pose of
ligand in the binding site

Test high-scoring o Test al
Drug Discovery o N

molecules

Basic Principles: Rigid vs Flexible Docking

Two-Step Scoring Scheme

Problems with

Compound
Rigid dOC]\ing library

Multiple Conformation
Flexible Docking Docking Score =vdW + H-bonding + Intemal energy

Best score

complexes
Sophisticated scoring function
for accurate binding

Binding Energy prediction

Calculation
e wt Eeee + Egp + E.

Surf




Knowledge-Based Flexible Docking With Two-Step Scoring Preliminary docking & Iterative weight optimization

/ nsemble of
[ Conformations .
ERQ x-ray N / m X n docking scores Experimental
__ structures Select highly - Best docking score Binding affinity
~ g weighted .
conformations _ library : : max(Ws, , .
2 o max(W;s,,, .

\

(Wi W,S) = S,

ning set of \

(
( active compounds )
A m /

" Best score
comg s

Ensemble
of

~omplexes
dentify the minimal number of conformation:
A. Preliminary multiple B. Iterative weight Ea X

conformation docking optimization

Population Weight Optimization by Metropolis MC Test system: Estrogen Receptor a (ERa)
Initialize Population wei - Nuclear hormone receptor superfamily
Pearson’s Correlation Coefficient d wi P
'earson orrelation Coetticien . // \

~(EXS,ue, -
Population Wei \ Pinax ands n, diethylstilbestrol
W, Wy + (28 = 1) X X

new

. Helix 12
‘max Xenoestrogens — phytoestrogens, ... »

Metropolis crite Environmental chemicals — pesticides, PCBs, ...

rand(0,)) < e
Weighted Docking Score Demanding fast screening met

L = WS ERa x-ray structures used in MD

S ax( S,

j max (SE

SZ

Structural diversity of 15 active compounds Generation of Multiple Conformations

MD trajectory of ERat
(PDB ID: 3ERD)

(N

Moxestrol

4-Ethylphenol
Bisphenol A
Phenylphenol

-Tetrachloro-4-biphenylol

50

nonylphenol

200 400

hydroxymethoxychlor olefin
Tine i second)

\ Identification of Minimal Subset of ERa Conformations

dr one /0
Selected
C Samping 3erd 3erd 1021 112 gku 1qgku
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Correlation Between Exp. Binding Affinity & Docking Score

q 5-q q (B-flexib q
Single rigid docking KB ﬂe.\nle Re-scoring
= = docking

E m Camelation
coefficient (
LR
[ T—
4
e

-0.
0.
-0.
0.

.66
.7
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Analysis of Virtual Screening Results by Receiver
Operating Characteristic (ROC) Curves

ots describe the tradeoff between sensitivity & specificity

AUC: Area Under ROC Curve, a measure of the test accur:

81 true positives (active compounds) 46 true positives 19 true positives

9% True positives (sen

log(RBA) > -5.0 log(RBA) > -2.0 log(RBA) > 0.0

9 True positive (sensitvy,

9% True positive (sensitvty)

20 40 60 20 4 w0 8

5 False posies (1-speciicty) % False postive (1-speciciy) 9 False posilve (1-specificty)

Ligand-based Methods

Cheminformatics

¢ Substructure

Virtual Screening of 160 Test Compounds

Identification of 19 active compounds with log(RBA) > 0.0

ation docking
ng (GOLD-ER3)

docking &
GOLD-ER3 S| 10 )
—— GOLD-max

:Q}':i?:mmrm (3) AMBER re-scoring of
GOLD-max (AMBER)

True hits %

SUMMARY

New computational approach was tested to identify the minimal
subset of receptor conformations for improved flexible docking

- MD-generated conformations can be used to find optimal
receptor conformations

- Weight optimization in the preliminary docking enabled us to
sample the minimal subset that provided good correlation
between experimental binding affinity and docking scores

ERa and its diverse acitve/inactives compounds were tested

Analysis of AUC & ROC plots quantitatively showed that our KB-
based multiple dockings were superior to single dockings

Full molecular mechanics energy calculations significantly
improved the binding affinity prediction and rank-order activity

Application of Cheminformatics

Prediction

Screening Classification

Unsupervised Learning QSAR
* PCA e MLR
* Cluster Analysis * PLS

* ANN
Supervised Learning

comparison
« k-Nearest Neighbors 3D-QSAR

« Pharmacophore  * SIMCA ¢ CoMFA

« Decision Trees (Forests) « Catalyst
* Neural Nets (ANN)
* Support Vector Machine

matching




Types of Molecular Descriptors

Quantitative Structure-Activity Relationship (QSAR) Modelsl

Constitutional, Topological
2-D structural formula

Set of Compounds

Geometrical
1 1

3-D shape and structure
Activity Data (Y) [] = Molecular Descriptors (X;)

\ , Quantum Chemical
QSAR

Y = /(Xi) Electrostatic

Prediction Interpretation
Thermodynamic

Quantitative Structure-Activity Relationship (QSAR) Models

Extract and Tabulate Descriptors

Compound  Activity (pk Descriptors (X)

Mol. Vl. (A% LogP Dipole Mom ()

420 2.8 0.97
332 4.6 2.23
198 -0.3 3.36
467 3.7 0.45
-1.5 177
etc. etc.

1
2
K]
‘4

5

N WO RN
g oo N W
O ~Nwod

o8
3]

Building QSAR Models
9Q Predicting Activities of Untested Compounds
A(obs. property or activity) O A(molecular descriptors) Using QSAR models as a predictive tool
Y = X))

Hammett, 1939 New Lead:
pK; = a, + a, (Mol Vol) extract

\ b descriptors
idependent 'variable
dependent variable

pKi=a, + a, (M&i‘&f’éﬁ)ﬂl'%‘;’(ié&i"j“i a; () + .

pK; = a, + a, (PC1) + a, (PC2) + a; (PC3) + ... |

Predicted activity of new lead



Concept of Principal Components

SA

... where PC1 and PC2 are linear combinations of g and SA

PCA Scores Plot

Classification Analysis

domain for
active compds

Each little donut represents a different compound

PC1 (62%)

QSAR Models

° Endpoints Build
° Chemical Structures - Computational
° Calc’d Properties Models

Utility of QSAR Models:
Fast - amenable to large-scale screening
Predictive - leverage existing data
Economical - prioritize expensive testing
Inductive - yield hidden patterns & insights into MOA
Humane — reduces extent of testing on animals

PCA/PLS Loadings

OMol Vol
OLogP
W dipole

What is the Practical Value of QSAR Models?

PKi=a, +a; (V) +a, (logP) + a5 (W) + ...

Experimental Activities (e.g., pK) are typically expensive,
labor-intensive, and time-consuming to measure, whereas
descriptors (V, logP, , etc.) are fast and easy to calculate

Finding New Lead Compounds

Mining Structural Databases

- Maybridge Database -NCI Database - ACD Database - WDI Database

~ 118,000 chemicals ~ 60,000 chemicals ~ 230,000 chemicals ~ 100,000 chemicals

... but how do you Database

find new “leads”?




DRUG-LIKE BEHAVIOR

w D)

The Lipinski “Rule of Five

Molecular Weight <500 (opt = ~350)

# Hydrogen Bond Acceptors <10 (opt = ~5)
# Hydrogen Bond Donors <5 (opt = ~2)
-2< cLog P <5 (opt=-~3.0)

# Rotatable Bonds <5

1: C. Lipinski et al, Adv. Drug. Del. Rev, 23, 3-25 (1997)

Ligand-Based VS of Small-Molecule Structural Databases

1. (Sub)structure Searching 3. Property Search:
Similar Molecular Features
(e.g., Vol, SA, y, ... hundreds more)

. Filtering: Lipinski’s “Rule of 5”

Oral Drug-like molecules share
the following characteristics:
1) Maximum of 5 H-bond donors
2) Maximum of 10 H-bond acceptors
3) Molecular Weight < 500
4) LogP < 5
C. A. Lipinski, et al., Adv Drug Delivery Reviews, 23, 3 (1997)|

2. Pharmacophore Matching

5. Apply QSAR Models

6. Molecular (Dis)Similarity

Molecular Similarity

§ Widely used all over drug discovery process
§ Sample applications:
Assessing diversity of a chemical dataset
Picking representative dataset from compound library
Given a compound and a compound library, identifying
subset
of similar compounds
Organizing library compounds for screening and

analysis
- Major step: sort into chemical families based on molecular

similarity

Requirements for Orally Active Drugs
- Pharmacokinetics -

Aqueous solubility
Membrane passive permeability
Cytochrome P450 activities
Plasma protein binding

o Efflux pumping and active transport

Mining Structural Databases

Query Compound

~

Technology Employed

§ Compound representation methods
Fingerprints/bit vectors, graph-based, ...
2D-keys vs 3D-keys, fragment vs distance based,

§ Similarity and distance measures
Tanimoto, Euclidean, ..., graph-based, ...
§ Clustering methods
§ Classification methods
§ Substructure searching/(sub)graph
matching



2D Substructure Searching
Structure Searches

e 2D Substructure searches
¢ 3D Substructure searches
— single conformation
— multiple conformation (flexible)

2D Similarity Searching 3D Fragments

« each fragment consists of 3 pharmacophoric

points
. HQ “wx y — the distances between
N N OH / A

AN each pair of these points

Query are binned to allow tolerances

* 4-point pharmacophore fragments are also
used

» Variety of definitions of pharmacophoric points

Searching in 3D

Example Search
Ligand-based Pharmacophore

* ‘Pharmacophore’ search

« A pharmacophore is a 3-D representation of a protein
(or other) binding site

Distances between
binding groups

in Angstroms and

the type of interaction
is searchable

A protonated amine (NH3+), a ring centre (defined by 6 atoms)
hydrogen-bond acceptor, a hydrogen bond donor-acceptor

-- ‘properties’ can be specified at atom points

-- Markush "dummy" atoms




Searching in 3D
Receptor-based Pharmacophore

Pharmacophore can be defined by constraints

3D Substructure Searching

a=8.620.58 Angstroms
b = 7.08* 0.56 Angstroms

¢ = 3.35% 0.65 Angstroms. imposed by the receptor on the nds

DISTANCE CONSTRAINTS
(Qualitative Affinity prediction mostly)

BIOPHASE

RECEPTOR

LIGAND

3D Substructure Searches

A
« Spatial Relationships c ol 8.5120A .
+ Define ranges for
p y 3.5-6.5A
distances and angles 3.5-6.5A
o Stored conformation O ove H-Donor or Acceptor

— usually lowest O
ner
eneray ove O Develop .
O w
AL

L, P
OH Py Zon

Lam et al. Science 263:380-384, 1994 "

Conformationally Flexible Searches Bioisosteres

Rotate around all freely Concept that a chemical group can be mimicked by a similar group
rotatable bonds Precedent in that many substitutions of molecules result in similar

i biological activity —another example of ‘similarity’
Many conformations

Energy penalty

Get many more hits >:<

Guests adapt to hosts and
Hosts adapt to guests
("induced fit")




Carbonyl

Some Searching Structural Databases for Lead Compounds
Bioisosteres o~ ~ 7 )
o /SOz N\ Query Molecule L ®

Acid

N

= \f \,
COOH I NH\N//

~
Amide
CONH. CON(Me)- -CSNH- CH2NH
-HNCO- >_<
Halogen
F.CLBrI CF3 CN C(CNY3 OMe

Design Strategies: Novel Cannabimimetics

nd-Match (B) Combinatorial (C) Database Searching

NI
owe

pKi=116nM pKi=051nM

Structural Similarity Numerical Similarity Measures

The property of a Compound » Calculate some numerical measure of similarity
is shared by most other between molecules
compounds within its
Neighborhood Region
* Query structure is a “target” molecule
i.e. neighbors of an active
Active L compound have a higher R .
probability of behavingin a « Database structures can be ranked in decreasing
Compound ‘similar’ way order of similarity to target
— find all molecules within threshold similarity to target
— find N most similar molecules to target

compounds




A fingerprint is a ‘molecular bar
code’ for a molecule

Used because
— shows neighborhood behavior

— does not require structural conformation or
alignment

— fast searching method

Fingerprint method used is CRC algorithm

Advantages/disadvantages

- ‘valid’ similarity in wide range of biological
assay

— easy to calculate

— difficult to understand

- not specific to one area

Substructural Keys

e Compounds are multi-domain:
— multiple occurrences of a key/substructure
— members of more than one chemical family

Anilide Benzylic
—
N
o0
Aromatic
Acid

D =
oo Alkane

(—

Biphenyl Phenyl-CCC-Phenyl

Similarity from Fingerprints

 similarity measures are most commonly calculated from
structure fingerprints
count the bitsthat are“on” in both molecules(“C")
— count the bitsthat are“ on” in each molecule separately (“D")

struct A: 00010100010101000101010011110100 13 bits
struct B: 00000000100101001001000011100000 8 bits

A&B=C: 00000000000101000001000011100000 6 bits
AorB=D: 00010100110101001101010011110100 15 bits

similarity coefficient can

becalculated from A, B and C
AB

Dictionary of Keys

o
H
~N N-N
o N \( 0-C(-N)-C
)J\ CH,-Ar-CH,
o C-N-N
%(_J

N-Ar-Ar-O
N-C-O
N-Ar-O
OH>1
CHy>1
N>1

10111000001 NH

"Bit Strings" of Substructure Keys

“How” akey hits?

Tanimoto Coefficient

similarity = C/D A B
similarity = C (e)
A+B-C

=6/(13+8-6) =0.4
the number of bits set in both molecules (*C")
divided by the number of bits set in either
molecule (*D")
The Tanimoto Coefficient is the most commonly
used similarity coefficient in chemical informatics
— also called the Jaccard coefficient

1= (AB)
(ADB)

Values above 0.85 are usually significant.




Neighborhood Behavior

How well do 2D fingerprints measure neighborhood
behavior in 20 literature datasets?

Selection of Representative Compounds
From Virtual Libraries

From all the molecules in a Chemical Library,

choose a diverse but representative subset to study

!

Run Biological Assays only on Representative Subset,

Activity difference (log units)

095 090
Tanimoto similarity

thereby saving Time, Money, Resources and Labor

Neighborhood
Region
“Activty data from Uehiing et al, J. Med.Chem. 1995

. . . Combinatorial Libraries Grow Exponentially
Chemicals Mapped in Descriptor Space

Descriptor-1

diacid component

Supplier A: purple
Supplier B: yellow

Supplier C: green
Supplier D: red 200 ‘

2500

1500

\f I

wod—r-o

H HOLC: con
NN A
Suceinic Acid

Gutsrc Ackt

Size of library

HOC\ A\, HOLC.
coum

Focused Library ) : & it b
1. Drug-Like ! o L AN
2. Structurally Diverse e
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From Models to Rational
Design and Synthesis

From QSPR models,
select those
molecular features
that are associated
with optimal
performance property

Synthesize
known
molecules
within cluster

Design and
synthesize new
scaffolds within
cluster




Shape Signatures Tool
PROCESSING

OUTPUT
shape

il

—) shape + charge

Small molecule or Generation of the 1D and 2D
Protein binding pocket Shape Signature Shape Signatures

Predictive Capability of Shape Signatures

Bicalutamide (AR antagonist) as query against multiple databases

1D 2D

¢ Entry ID .
Source iy Score  Score

Structure
LeadQuest T_535051 0047 0.204

show AR
affinity

LeadQuest T_409658

ASINEX ~ ASN_6365557  0.063

EDC 130_042 6 0.480 i

Chem. Res. Toxicol. 16, 1338-1358 (2003) Moderate affinity to AR

PDB-based Shape Signatures Database

Protein Data Bank (PDB): World Repository of 30K
Protein-Ligand Crystal Structures (http://www.rcsb.org/pdb/)

Tn ths page you can select organisms. The protein ID and the 2D images of the kgands will be displayed in a table form.

[HONAN (175T) =] _SubmitMolecule
Shape Signatures of PDB- extracted Ilgands

Here are the Results obtained by scarching for HUMAN

EY\

Species/Protein Family

Shape Signatures

compares molecules based on similarity in shape and
electrostatic properties, rather than on chemical structure

17B-estradiol
—

Diff= 0.082

Small value of Diff indicates that 173-estradiol and DES are "similar",

even though they belong to different chemical classes.

Flowchart Graphics User Interface

Molecular Sketcher

Molecular Viewer
¢

Ray Tracing
cluster - Histogram
.Ildihg

F'

Database Searching

Shape Signature Databases

« Current Database >2 million cmpds
 Directed kinase and GPCR databases
* PDB-extracted ligand database

From Molecules to Mechanism

Shape Sigs PDB Ligands

BED -

KEGG Metabolic Pathways: Receptor Site Pocket
— http://www.genome.ad.jp/kegg/metabolis
m.html
EMP - Enzymes and Metabolic Pathways:
— http://emp.mcs.anl.gov/
WIT - Metabolic Reconstruction:
— http://wit.mcs.anl.gov/WIT2/
UM-BBD icrobial
Biocatalysis/Biodegradatation:
-- http://umbbd.ahc.umn.edu/
EcoCyc - E. coliGenes and Metabolism:
http:/ /www.ecocyc.org/
Metalgen - Genes and Metabolism:
http://indigo.genetique. uvsq fr/
Boehringer Mannheim - Biochel | Pathways:
— http://www.expasy.org/cs
biochem-index

Public Databases




Key Features of Shape Signatures

Uses molecular shape and features (e.g. surface charge),
thus find hits missed by techniques that search on chemical
(sub)structure alone

Many uses: scaffold hopping (crossing chemical families)
predictive toxicology, /nverse structure-based drug de

Fast; simple input; easy to use, update, and expand; very
compact; infinitely expandable

Works for organics and organometallics, neutral or charged

Applicable in ligand-based mode (ligand-ligand similarity)
and receptor-based mode (ligand-receptor complementarity)

Cluster analysis applied to chemical information

Three main uses:

— Grouping compounds into series, particularly helpful in analyzing
large datsets (i.e. 1,000 series easier to analyze than 50,000
arbitrary compounds)

Grouping structures which are likely to have similar biological
activity, the premise being that if several compounds in a cluster
are active, others are likely to be active too

Picking small sets of “representative compounds” from large
datasets

Common measures of similarity and distance — Tanimoto
and Euclidean

By incorporating these fingerprint-based methods, we
can use standard cluster-analysis techniques for finding
groups of similar structures in a dataset

Clustering methods

Single Link—

Complete Link— —|

Group Average— —| Agglomerative
Weighted Grp Av.
Centroid—
Median

Ward- — |

Hierarchical
—

Assn Analysis— —

Crawford/Wishart—| Monothetic
Info Analysis— |
Err Sum Squares—I Divisive |

MacNaughton-Smi th—
Roux— L ]
Minimun Diameter— Polythetic

Single-Pass("Leader”

Hill-climbing— —

Kmeans— | Relocation
ISODAT/
Moving Method.

Jarvis-Patrick—
1
—!

Density Estimation.
Non-hierarchical

Mixture Resolution

Fuzzy Clustering

Cluster analysis

Refers to a group of statistical methods used for
identifying groups (“clusters”) of similar items in a multi-
dimensional space

Three popular methods of cluster-analysis:
Ward’s, K-means and Jarvis-Patrick

Require a measure of distance or similarity between
items

Kinds of cluster analysis used in chemoinformatics

Hierarchical
— Agglomerative (e.g. Wards)
— Divisive

Non-hierarchical

— Single-pass

— Nearest Neighbor (e.g. Jarvis-Patrick)
— Relocation (e.g. K-means)

“New” methods
— ROCK, CURE, CLARA, Chamelion

Hierarchical Clustering - Agglomerative

Starts with each compound in its own cluster

The two most similar clusters are merged

The process repeats (creating a “tree”) until all items are
merged into one cluster

Wards uses Euclidean Distance to measure similarity
between items. Clusters of more than one compound
are represented by an “mean” fingerprint




Sample dataset Ward's Clustering

Amphetamine Captopril

Chlorpromazine Diclofenac Gabapentin Salicylate

Ward'’s Level
Selection

Hierarchical Clustering - Divisive

« Starts with all compounds in one cluster

» The cluster is split into two. These two clusters are then
split, and so on until all compounds are in the same
cluster

°

Not really used in the chemoinformatics community,
although some divisive methods (e.g. Divisive K-means)
are being explored




Jarvis-Patrick

For each compound in a dataset, the J nearest
neighbors (i.e. other compounds in the dataset that are
the most similar) are identified.

Compounds are then placed in the same cluster if they:
— Are in each others’ list of J-nearest neighbors

— Kof their J nearest neighbors are in common

Requires that J and K be predefined

Usually uses Tanimoto as measure of similarity

Very fast, but clusterings generally not as good as other
methods

“New” methods

Most work was done on clustering methods in the 60’s
and 70’s. Then not much was done until the 90’s when a
bunch of new methods were developed as a result of the
needs of data mining

These are generally able to handle oddly-shaped
clusters better than their older counterparts

Still yet to be evaluated for chemoinformatics

Examples: ROCK, CURE, Chameleon

See Downs & Barnard 2002 paper for more information

K-means clustering (Relocation)

Pick a random set of initial cluster “centroids”
Place each of the items into the nearest cluster
Recalculate centroids

Repeat, until no more items change cluster

K-means

Need to decide number of clusters beforehand
Much faster than Wards
Generally requires a few (3-50) iterations to settle

Less likely to produce “singletons” than Wards => you
have ‘stragglers’ in clusters

Current consensus on Clustering

Wards provides the most accurate clustering, but is time
consuming — O(N?)

There are multiple ways to choose a level from a Ward's
hierarchy

K-means is much faster than Wards — O(N) — but not
quite as effective

Jarvis-Patrick still used especially for very large datasets
A number of new methods have been introduced into the
data mining community in the last 10 years, and these
are under investigation for use in Chemoinformatics
applications




Cluster analysis - General References

Chemical Similarity Searching, P. Willett, .M. Barnard,
G.M.Downs, J. Chem. Inf. Comput. Sci., 1998, 38, 983-
996

Clustering of Chemical Structures on the Basis of Two-
Dimensional Similarity Measures, J. Chem. Inf. Comput.
Sci, 1992, 36, 644-649

Clustering methods and their uses in Computational
Chemistry, G.M.Downs and J. M. Barnard, Reviews in
Computational Chemistry, 2002, 18, 1-40

Gaussian mixture clustering and imputation of
microarray data, M Ouyang, WJ Welsh, P Georgopoulos,
Bioinformatics, 2004, 20, 917-923

Diversity Analysis

Arose in the late 1990’s in response to the following
needs:

— There was much interest as to how well the corporate collections
held by pharmas “covered” possible chemistry / drug space
Combinatorial Chemistry experiments were producing many new
compounds, and people wanted to know if these compounds
added anything new to their corporate collections, i.e. if they
made the datasets more diverse, or just replicated what was
already in there
Libraries of thousands of compounds became available for
purchase — are they worth the money?

“Descriptor Space”

« People began to talk about “Chemistry Space” and “Drug
Space™
— Chemistry space — if you made all the possible compounds that
could theoretically be made, the chemistry space represents the
regions of a multi-dimensional descriptor space (as defined by a
given descriptor set) that would be occupied
— Drug space — the regions of the chemistry space that would be
inhabited by drug molecules
So questions began to be asked such as “how much of
chemistry space does our corporate collection cover?”;
“how could we cover more?”; “what about drug space?”
etc.

Cluster analysis - Application

« Separating Actives and Inactives

— Use of Structure-Activity Data to Compare Structure-Based
Clustering Methods and Descriptors for Use in Compound
Selection, R.D. Brown, Y.C. Martin, J. Chem. Inf. Comput. Sci.,
1996, 36, 572-584.

« Finding series
— Comparison of 2D Fingerprint Types and Hierarchy Level
Selection Methods for Structural Grouping using Wards
Clustering, D.J. Wild, J. Blankley, J. Chem. Inf. Comput. Sci.,
2000, 40, 155-162.

“Descriptor Space”

If you chose a descriptor set (e.g. of n fingerprint bits),
the “descriptor space” represents the space created if
you plot each of the descriptors as a separate dimension

E.g. if we just had two descriptors (mol.wt. and LogP),
our descriptor space would be:

Simple descriptor space for corporate
collection




Measuring Diversity of a set of compounds

13 H H 37
Diversity - Mean dissimilarity method
« Thus, companies wanted to increase the “diversity” of » Calculate the Mean Inter-molecular Similarity of all the
their corporate collections, i.e. make them cover more pairs of molecules in the set, e.g. using the tanimoto
chemistry and / or drug space. coefficient:
« The hope then is that you have a better chance of finding
a “hit” in a high-throughput screen, etc.

Mean Dissimilarity = (1 — MIMS)

Gives a measure of relative diversity, i.e. how different
the molecules are to each other. Doesn’t say how much
“space” is covered by the molecules

Which is the most “diverse”? Picking a “representative set”

Find a small subset of compounds from a larger set
which “represents” the large set

We can then, e.g. only screen the small subset, on the
assumption that we're “covering the chemistry space” of
the large set

Picking a “representative set” Picking a “representative set”

« E.g. by clustering, and picking compounds nearest the « E.g. pick the set which Maximizes the Minimum distance
cluster centroids: between representatives




Comparing sets of compounds

How diverse is this set compared to this other set?

— You can compare Mean dissimilarity

— Comparing with a large, general dataset (e.g. World Drugs
Index) can give a measure of how a dataset compares in
diversity to a large, general collection, which approaches
“coverage”

How different are these two sets of compounds?

— Calculate individual diversity measures, then the diversity
measure when combined. How much does the diversity go up?

— BUT: May not be accurately reflected by mean dissimilarity

Modern QSAR

Use computational statistical and machine-learning methods to build
“models of activity” to predict activity of unknown compounds (2D or
3D)
Models are trained using compounds where activity is known
Examples:
— Linear and Multiple regression
Principal Component Analysis
Recursive partitioning
Neural Networks
Support Vector Machines
Genetic Algorithms
Bayesian analysis
— Version Spaces
See NetSci QSAR articles in

Building models of activity

Most nonlinear methods use three phases:
A training phase where the models are presented with

sets of descriptors and known responses (e.g. fingerprint

bits and known activities for a set of compounds)

A validation phase where the trained model is tested on

compounds with known activity, but where the activity
isn’t presented to the model

A predictive phase where the model is used to predict
activity of unknown compounds

Comparing sets of compounds

Building models of activity

Most methods assume a single response variable (e.g.
activity) and multiple descriptor variables (e.g. fingerprint
bits, properties).

Linear methods (e.g. Hansch, Free Wilson) assume that
the activity varies linearly with the descriptor values that
affect it

Non-linear methods do not make this assumption, and
thus are generally the most useful.

Model development phases




Recursive Partitioning Recursive Partitioning

1000 compounds
(300a, 700i)

One of the first methods to be applied to large datasets
(e.g. using HTS data)

« When trained, RP recursively splits a dataset into two
subsets, based on the values of a particular descriptor. It 420 compounds 580 compounds
splits based on the descriptors and their values that best = R
discriminate between actives and inactives
The criterion used for splitting can then be used

predictivel_y - the_pre_dicted activity is usually the average P — P —
of the set into which it falls (215a, 2i) (652, 138i)

Ligand-Based
Drug Design

Opioii ptor
Active Compounds

codeine, methadone, fentanyl, etc.
three related receptors: 3, k, 4
morphine prefers p over & and k

respiratory depression
nausea, vomiting, constipation
addictive

find a new molecule that prefers & over
pand kK
okay ... but how?




(X -

OH

\}
</ \,N Di-Substituted
/L Triazole (DST)

OH

pain management

l narcotic addiction
K; = 4000nM

immunotherapy

K, > 10,000 nM

Nair, Yu, Welsh (worldwide patent filed)




