Dynamic Trees

+ Goal: maintain a forest of rooted trees with costs on vertices.

= Each tree has a root, every edge directed towards the root.

» Operations allowed:

link(v,w): creates an edge between v (a root) and w.

cut(v,w): deletes edge (v,w).

findcost(v): returns the cost of vertex v.

findroot(v): returns the root of the tree containing v.

findmin(v): returns the vertex w of minimum cost on the path
from v to the root (if there is a tie, choose the closest to the root).

addcost(v,x): adds x to the cost every vertex from v to root.

Dynamic Trees

Dynamic Trees

Dynamic Trees

« An example (two trees):

Dynamic Trees

a3
I s h;\ﬁ link(g,e)
k'

4
—_—
a1 17 8 %6

o m
DY
o4 pb o4 pb
o1

1 b
g3 h9id

Dynamic Trees

Dynamic Trees

e4f g3h9,4 cut(q)
1 28 6
A

o4 p6

Dynamic Trees

Dynamic Trees

= findmin(s) = b

= findroot(s) = a

findcost(s) = 2

= addcost(s,3)

Obvious Implementation

Dynamic Trees

» Anode represents each vertex;

» Each node x points to its parent p(x):
= cut, split, findcost: constant time.

= findroot, findmin, addcost: linear time on the size of the path.
« Acceptable if paths are small, but O(n) in the worst case.

« Cleverer data structures achieve O(log n) for all operations.

Dynamic Trees

Simple Paths

» We start with a simpler problem:
= Maintain set of paths subject to:
« split: cuts a path in two;
- concatenate: links endpoints of two paths, creating a new path.
= Operations allowed:
« findcost(v): returns the cost of vertex v;
« addcost(v,x): adds x to the cost of vertices in path containing v;
« findmin(v): returns minimum-cost vertex path containing v.

o
Ul

0

Dynamic Trees

Simple Paths as Lists

« Natural representation: doubly linked list.
= Constant time for findcost.

= Constant time for concatenate and split if endpoints given, linear
time otherwise.

= Linear time for findmin and addcost.

« Can we do it O(log n) time?

costs: 6 2 3 4 7 9

FOow

Dynamic Trees

Simple Paths as Binary Trees

« Alternative representation: balanced binary trees.
= Leaves: vertices in symmetric order.

= Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees

Dynamic Trees

» Compact alternative:

= Each internal node represents both a vertex and a subpath:
« subpath from leftmost to rightmost descendant.

Simple Paths: Maintaining Costs

» Keeping costs:
= First idea: store cost(x) directly on each vertex;

= Problem: addcost takes linear time (must update all vertices).

costs: 6 2 3 4 7 9 3

Ul

Dynamic Trees

O Q
v, v, v, v, v, Vg v,
Dynamic Trees
Simple Paths: Maintaining Costs
« Better approach: store Acost(x) instead:
= Root: Acost(x) = cost(x)
= Other nodes: Acost(x) = cost(x) — cost(p(x))
difference form n Ve
costs: 6 2 3 4 7 9 3
v, v, v, v, Uy Vg v,

Dynamic Trees

Simple Paths: Maintaining Costs

Simple Paths: Finding Minima

» Costs:
= addcost: constant time (just add to root)
= Finding cost(x) is slightly harder: O(depth(x)).

costs: 6 2 3 4 7 9

« Still have to implement findmin:

= Store mincost(x), the minimum cost on subpath with root x.
« findmin runs in O(log n) time, but addcost is linear.

costs: 6 2 3 4 7 9 3

Dynamic Trees

Dynamic Trees

Simple Paths: Finding Minima

Simple Paths: Data Fields

« Store Amin(x) = cost(x)—mincost(x) instead.

= findmin still runs in O(log n) time, addcost now constant.

costs: 6 2 3 4 7 9

« Final version:

= Stores Amin(x) and Acost(x) for every vertex

costs: 6 2 3 4 7 9 3

Dynamic Trees

Dynamic Trees

Simple Paths: Structural Changes

Simple Paths: Structural Changes

+ Concatenating and splitting paths:
= Join or split the corresponding binary trees;
= Time proportional to tree height.

= For balanced trees, this is O(log n).
« Rotations must be supported in constant time.
» We must be able to update Amin and Acost.

» Restructuring primitive: rotation.

() O
rotate(v)

OO N ORI O

« Fields are updated as follows (for left and right rotations):
= Acost’(v) = Acost(v) + Acost(w)
= Acost’(w) = —Acost(v)
= Acost’(b) = Acost(v) + Acost(b)
= Amin’(w) = max{o, Amin(b) — Acost’(b), Amin(c) — Acost(c)}
= Amin’(v) = max{o, Amin(a) — Acost(a), Amin’(w) — Acost’(w)}

Dynamic Trees

Dynamic Trees

Splaying

Splaying

« Simpler alternative to balanced binary trees: splaying.
= Does not guarantee that trees are balanced in the worst case.
= Guarantees O(log n) access in the amortized sense.

= Makes the data structure much simpler to implement.

» Basic characteristics:
= Does not require any balancing information;

= On an access to v, splay on v:
« Moves v to the root;
« Roughly halves the depth of other nodes in the access path.

= Based entirely on rotations.

« Other operations (insert, delete, join, split) use splay.

« Three restructuring operations:
(2
O
NSO
AN
[\
OO
AN VNN

(only happens if y is root)

zigzag(x)
—

)
OO
ANVANVANYAN
(=)

(2
ORL
/A

[\

7igzig(x)
—_—

()

A ()
N O
[\

[\

Dynamic Trees

Dynamic Trees

An Example of Splaying

An Example of Splaying

zigzig(a)
—_—

Dynamic Trees

Dynamic Trees

An Example of Splaying

An Example of Splaying

zigzag(a)
—

Dynamic Trees

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

zigzag(a)

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

zig(a)

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

« End result:

splay(a)
—

Dynamic Trees

Amortized Analysis

« Bounds the running time of a sequence of operations.
« Potential function ® maps each configuration to real number.

» Amortized time to execute each operation:
" =h+ O -D;
« a; amortized time to execute i-th operation;
« t;: actual time to execute the operation;
« @ potential after the i-th operation.

«+ Total time for m operations:

Ei:l.,m t;= 2i:1,Am(ai + D~ D) =D~ D, + Ei:l..m a;

Amortized Analysis of Splaying

Dynamic Trees

+ Definitions:
= s(x): size of node x (number of descendants, including x);
« At most n, by definition.
= r(x): rank of node x, defined as log s(x);
« At most log n, by definition.
= ®; potential of the data structure (twice the sum of all ranks).
« At most O(n log n), by definition.

« Access Lemma [ST85]: The amortized time to splay a tree
with root t at a node x is at most

6(r()-r(x)) + 1= Olog(s(t)/s(x))).

Dynamic Trees

Proof of Access Lemma

» Access Lemma [ST85]: The amortized time to splay a tree
with root t at a node x is at most

6(r(t)-r(x)) + 1= O(log(s(t)/s(x)))-
+ Proofidea:
= r{(x) = rank of x after the i-th splay step;

= g;= amortized cost of the i-th splay step;

a; < 6(ri(x)-r;_,(x)) + 1 (for the zig step, if any)

a; < 6(ry(x)-r;_,(0)) (for any zig-zig and zig-zag steps)

Total amortized time for all k steps:

L k@ < Xy g [6(r, 001 D] + [6(,(0)-13_,()) + 1]
= 61(0) — 67,(0) + 1

Proof of Access Lemma: Splaying Step

Dynamic Trees

o Zig-zig: O (2
O A (0
QA A 3
Claim: a < 6 ("(x) — r(x)) ANA A A
t+ @ -0 <6 (r(x) —rx)
2 + 2(r(x)+r’y)+r'(z)) — 2(r(x)+ry)+r(z)) < 6 ((x) — r(x))
1+7°0) +r’@) +1r(2) —r(x) - r@y) —r(z) <3 (') - r(x)
1+7°@) + @) - () - r(Y) <3 (&) - r(x)) since r'(x) = r(2)
1+7(y) +1r'(z) —2r(x) <3 (") - rx)) since r(y) = r(x)
1+77°(x) + (z) — 2r(x) <3 (X(x) — r(x))
rE)-r)+ @) -rx)<-1 rearranging
log(s(x)/s(x) + log(s(2)/s () < -1

TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most 1/2.

since (x) > ’(y)

definition of rank

Dynamic Trees

Proof of Access Lemma: Splaying Step

o Zig-zag: () ()
OV N O (2
£ —— AAAM
Claim: a < 4 ("(x) — r(x)) A A
t+ @ —Dd<4(r(x) —rk)
2 + (2r'(x)+2r’(y)+2r'(z)) — (2r(x)+2r(y)+2r(z)) < 4 (" (x) — r(x))
2+ 2r°(y) + 2r'(z) — 2r(x) - 2r(y) <4 (") - r(x)), since r'(x) = r(z)
2 +2r'(y) +2r'(z) - 4r(x) <4 (F(x) - r()), since r(y) = r(x)
@) -rE) + (@) —rx)<-1, rearranging
log(s'(y)/s'(x) + log(s'(2)/s'(x)) < -1

TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most 1/2.

definition of rank

Proof of Access Lemma: Splaying Step

Dynamic Trees

° Zlg o zig(x) °

(A — A @)
AN JANRAN

. N (only happens if y is root)
Claim: a <1+ 6 ("(x) — r(x))

t+®-Dd<1+6((x)—rk)

1+ (2r'(x)+2r'(y)) — (er(x)+2ry)) <1+ 6 ("(x) — r(x))

1+2(() -r(x) <1+ 6 ((x) - r(x), since r(y) 2 r(y)
TRUE because r'(x) > r(x).

Dynamic Trees

Splaying

» To sum up:
= No rotation: a =1
» Zigia<6 (@) -r(x) +1
= Zig-zig: a <6 (r(x) — r(x))
= Zig-zag: a<4 (r(x) - r(x))
= Total amortized time at most 6 (r(t) — r(x)) + 1 = O(log n)

« Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.

Dynamic Trees

Dynamic Trees

» We know how to deal with isolated paths.

« How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

+ Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

» Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

Dynamic Trees

Dynamic Trees

» Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

» Itisunique.

Dynamic Trees

» Main idea: partition the vertices in a tree into disjoint solid

Dynamic Trees

«+ Solid paths:
= Represented as binary trees (as seen before).
= Parent pointer of root is the outgoing dashed edge.
= Hierarchy of solid binary trees linked by dashed edges: “virtual
tree”.
+ “Isolated path” operations handle the exposed path.
= The solid path entering the root.

= Dashed pointers go up, so the solid path does not “know” it has
dashed children.

« If a different path is needed:

= expose(v): make entire path from v to the root solid.

Virtual Tree: An Example

Dynamic Trees

m

f
m
. c
q o) i &, a
K PR
i o O h
n .
d
r t g
v s
wd

actual tree virtual tree

Dynamic Trees

Dynamic Trees

+ Example: expose(v)

Dynamic Trees

Dynamic Trees

» Example: expose(v)
= Take all edges in the path to the root, ...

Dynamic Trees

Dynamic Trees

« Example: expose(v)

= ..., make them solid, ...

Dynamic Trees

Dynamic Trees

« Example: expose(v)
= ...make sure there is no other solid edge incident into the path.
« Uses splice operation.

Dynamic Trees

Exposing a Vertex

« expose(x): makes the path from x to the root solid.

« Implemented in three steps:
1. Splay within each solid tree in the path from x to root.
2. Splice each dashed edge from x to the root.
— splice makes a dashed become the left solid child;
— If there is an original left solid child, it becomes dashed.
3. Splay on x, which will become the root.

Dynamic Trees

Dynamic Trees: Splice

+ Additional restructuring primitive: splice.

splice(v)
—

= Will only occur when z is the root of a tree.
« Updates:
= Acost’(v) = Acost(v) — Acost(z)
= Acost’ (1) = Acost(u) + Acost(z)
= Amin’(z) = max{0, Amin(v) — Acost’(v), Amin(x) — Acost(x)}

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

Exposing a Vertex: An Example

» expose(a)

pass1

2

(virtual trees)

Dynamic Trees

Exposing a Vertex: Running Time

» Running time of expose(x):
= proportional to initial depth of x;
= xisrotated all the way to the root;
= wejust need to count the number of rotations;
« will actually find amortized number of rotations: O(log n).
= proof uses the Access Lemma.
« s(x), r(x) and potential are defined as before;

« In particular, s(x) is the size of the whole subtree rooted at x.
— Includes both solid and dashed edges.

Dynamic Trees

= k: number of dashed edges from x to the root t.
= Amortized costs of each pass:
1. Splay within each solid tree:
— x; vertex splayed on the i-th solid tree.
— amortized cost of i-th splay: 6 (r'(x)) — r(x)) + 1.
— r(x;,) 21r(x), so the sum over all steps telescopes;
— Amortized cost first of pass: 6(r’(x,)-r(x,)) + k<6 logn + k.
2. Splice dashed edges:
— no rotations, no potential changes: amortized cost is zero.
3. Splay on x:
— amortized cost is at most 6 log n + 1.
— xends up in root, so exactly k rotations happen;
— each rotation costs one credit, but is charged two;
— they pay for the extra k rotations in the first pass.

= Amortized number of rotations = O(log n).

Implementing Dynamic Tree Operations

Dynamic Trees

« findcost(v):
= expose v, return cost(v).
« findroot(v):
= expose v;
= find w, the rightmost vertex in the solid subtree containing v;

= splay at w and return w.

o findmin(v):

expose v;

use Acost and Amin to walk down from v to w, the last minimum-
cost node in the solid subtree;

= splay at w and return w.

Dynamic Trees

Implementing Dynamic Tree Operations

+ addcost(v, x):

= expose v;

= add x to Acost(v);
o link(v,w):

= expose v and w (they are in different trees);

= set p(v)=w (that is, make v a middle child of w).
o cut(v):

= expose v;

= add Acost(v) to Acost(right(v));

= make p(right(v))=null and right(v)=null.

Extensions and Variants

Dynamic Trees

« Simple extensions:
= Associate values with edges:
« just interpret cost(v) as cost(v,p(v)).
= other path queries (such as length):
« change values stored in each node and update operations.
= free (unrooted) trees.
- implement evert operation, which changes the root.

« Not-so-simple extension:
= subtree-related operations:

« requires that vertices have bounded degree;

« Approach for arbitrary trees: “ternarize” them:
— [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees

Alternative Implementation

+ Total time per operation depends on the data structure used to
represent paths:

= Splay trees: O(log n) amortized [ST85].

= Balanced search tree: O(log?n) amortized [ST83].

= Locally biased search tree: O(log n) amortized [ST83].

= Globally biased search trees: O(log n) worst-case [ST83].

« Biased search trees:
= Support leaves with different “weights”.

= Some solid leaves are “heavier” because they also represent
subtrees dangling from it from dashed edges.

= Much more complicated than splay trees.

Dynamic Trees

