Dynamic Trees

+ Goal: maintain a forest of rooted trees with costs on vertices.

= Each tree has a root, every edge directed towards the root.

» Operations allowed:

link(v,w): creates an edge between v (a root) and w.

cut(v,w): deletes edge (v,w).

findcost(v): returns the cost of vertex v.

findroot(v): returns the root of the tree containing v.

findmin(v): returns the vertex w of minimum cost on the path
from v to the root (if there is a tie, choose the closest to the root).

addcost(v,x): adds x to the cost every vertex from v to root.
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« An example (two trees):

Dynamic Trees

a3
I s h;\ﬁ link(g,e)
k'

4
—_—
a1 17 8 %6

o m
DY
o4 pb o4 pb
o1

1 b
g3 h9id

Dynamic Trees

Dynamic Trees

e4f g3h9,4 cut(q)
1 28 6
A

o4 p6

Dynamic Trees

Dynamic Trees

= findmin(s) = b

= findroot(s) = a

findcost(s) = 2

= addcost(s,3)

Obvious Implementation

Dynamic Trees

» Anode represents each vertex;

» Each node x points to its parent p(x):
= cut, split, findcost: constant time.

= findroot, findmin, addcost: linear time on the size of the path.
« Acceptable if paths are small, but O(n) in the worst case.

« Cleverer data structures achieve O(log n) for all operations.
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Simple Paths

» We start with a simpler problem:
= Maintain set of paths subject to:
« split: cuts a path in two;
- concatenate: links endpoints of two paths, creating a new path.
= Operations allowed:
« findcost(v): returns the cost of vertex v;
« addcost(v,x): adds x to the cost of vertices in path containing v;
« findmin(v): returns minimum-cost vertex path containing v.
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Simple Paths as Lists

« Natural representation: doubly linked list.
= Constant time for findcost.

= Constant time for concatenate and split if endpoints given, linear
time otherwise.

= Linear time for findmin and addcost.

« Can we do it O(log n) time?

costs: 6 2 3 4 7 9

FOow
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Simple Paths as Binary Trees

« Alternative representation: balanced binary trees.
= Leaves: vertices in symmetric order.

= Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees
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» Compact alternative:

= Each internal node represents both a vertex and a subpath:
« subpath from leftmost to rightmost descendant.

Simple Paths: Maintaining Costs

» Keeping costs:
= First idea: store cost(x) directly on each vertex;

= Problem: addcost takes linear time (must update all vertices).

costs: 6 2 3 4 7 9 3
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Simple Paths: Maintaining Costs
« Better approach: store Acost(x) instead:
= Root: Acost(x) = cost(x)
= Other nodes: Acost(x) = cost(x) — cost(p(x))
difference form n Ve
costs: 6 2 3 4 7 9 3
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Simple Paths: Maintaining Costs

Simple Paths: Finding Minima

» Costs:
= addcost: constant time (just add to root)
= Finding cost(x) is slightly harder: O(depth(x)).

costs: 6 2 3 4 7 9

« Still have to implement findmin:

= Store mincost(x), the minimum cost on subpath with root x.
« findmin runs in O(log n) time, but addcost is linear.

costs: 6 2 3 4 7 9 3
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Simple Paths: Finding Minima

Simple Paths: Data Fields

« Store Amin(x) = cost(x)—mincost(x) instead.

= findmin still runs in O(log n) time, addcost now constant.

costs: 6 2 3 4 7 9

« Final version:

= Stores Amin(x) and Acost(x) for every vertex

costs: 6 2 3 4 7 9 3
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Simple Paths: Structural Changes

Simple Paths: Structural Changes

+ Concatenating and splitting paths:
= Join or split the corresponding binary trees;
= Time proportional to tree height.

= For balanced trees, this is O(log n).
« Rotations must be supported in constant time.
» We must be able to update Amin and Acost.

» Restructuring primitive: rotation.

() O
rotate(v)

OO N ORI O

« Fields are updated as follows (for left and right rotations):
= Acost’(v) = Acost(v) + Acost(w)
= Acost’(w) = —Acost(v)
= Acost’(b) = Acost(v) + Acost(b)
= Amin’(w) = max{o, Amin(b) — Acost’(b), Amin(c) — Acost(c)}
= Amin’(v) = max{o, Amin(a) — Acost(a), Amin’(w) — Acost’(w)}
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Splaying

Splaying

« Simpler alternative to balanced binary trees: splaying.
= Does not guarantee that trees are balanced in the worst case.
= Guarantees O(log n) access in the amortized sense.

= Makes the data structure much simpler to implement.

» Basic characteristics:
= Does not require any balancing information;

= On an access to v, splay on v:
« Moves v to the root;
« Roughly halves the depth of other nodes in the access path.

= Based entirely on rotations.

« Other operations (insert, delete, join, split) use splay.

« Three restructuring operations:
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An Example of Splaying

An Example of Splaying

zigzig(a)
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An Example of Splaying

An Example of Splaying

zigzag(a)
—
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An Example of Splaying

An Example of Splaying
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zigzag(a)
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An Example of Splaying

An Example of Splaying
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zig(a)
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An Example of Splaying

An Example of Splaying

Dynamic Trees

« End result:

splay(a)
—
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Amortized Analysis

« Bounds the running time of a sequence of operations.
« Potential function ® maps each configuration to real number.

» Amortized time to execute each operation:
" =h+ O -D;
« a; amortized time to execute i-th operation;
« t;: actual time to execute the operation;
« @ potential after the i-th operation.

«+ Total time for m operations:

Ei:l.,m t;= 2i:1,Am(ai + D~ D) =D~ D, + Ei:l..m a;

Amortized Analysis of Splaying

Dynamic Trees

+ Definitions:
= s(x): size of node x (number of descendants, including x);
« At most n, by definition.
= r(x): rank of node x, defined as log s(x);
« At most log n, by definition.
= ®; potential of the data structure (twice the sum of all ranks).
« At most O(n log n), by definition.

« Access Lemma [ST85]: The amortized time to splay a tree
with root t at a node x is at most

6(r()-r(x)) + 1= Olog(s(t)/s(x))).
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Proof of Access Lemma

» Access Lemma [ST85]: The amortized time to splay a tree
with root t at a node x is at most

6(r(t)-r(x)) + 1= O(log(s(t)/s(x)))-
+ Proofidea:
= r{(x) = rank of x after the i-th splay step;

= g;= amortized cost of the i-th splay step;

a; < 6(ri(x)-r;_,(x)) + 1 (for the zig step, if any)

a; < 6(ry(x)-r;_,(0)) (for any zig-zig and zig-zag steps)

Total amortized time for all k steps:

L k@ < Xy g [6(r, 001 D] + [6(,(0)-13_,()) + 1]
= 61(0) — 67,(0) + 1

Proof of Access Lemma: Splaying Step
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o Zig-zig: O (2
O A (0
QA A 3
Claim: a < 6 ("(x) — r(x)) ANA A A
t+ @ -0 <6 (r(x) —rx)
2 + 2(r(x)+r’y)+r'(z)) — 2(r(x)+ry)+r(z)) < 6 ((x) — r(x))
1+7°0) +r’@) +1r(2) —r(x) - r@y) —r(z) <3 (') - r(x)
1+7°@) + @) - () - r(Y) <3 (&) - r(x))  since r'(x) = r(2)
1+7(y) +1r'(z) —2r(x) <3 (") - rx)) since r(y) = r(x)
1+77°(x) + (z) — 2r(x) <3 (X(x) — r(x))
rE)-r)+ @) -rx)<-1 rearranging
log(s(x)/s(x) + log(s(2)/s () < -1

TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most 1/2.

since (x) > ’(y)

definition of rank
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Proof of Access Lemma: Splaying Step

o Zig-zag: () ()
OV N O (2
£ —— AAAM
Claim: a < 4 ("(x) — r(x)) A A
t+ @ —Dd<4(r(x) —rk)
2 + (2r'(x)+2r’(y)+2r'(z)) — (2r(x)+2r(y)+2r(z)) < 4 (" (x) — r(x))
2+ 2r°(y) + 2r'(z) — 2r(x) - 2r(y) <4 (") - r(x)), since r'(x) = r(z)
2 +2r'(y) +2r'(z) - 4r(x) <4 (F(x) - r()), since r(y) = r(x)
@) -rE) + (@) —rx)<-1, rearranging
log(s'(y)/s'(x) + log(s'(2)/s'(x)) < -1

TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most 1/2.

definition of rank

Proof of Access Lemma: Splaying Step
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° Zlg o zig(x) °
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. N (only happens if y is root)
Claim: a <1+ 6 ("(x) — r(x))

t+®-Dd<1+6((x)—rk)

1+ (2r'(x)+2r'(y)) — (er(x)+2ry)) <1+ 6 ("(x) — r(x))

1+2( () -r(x) <1+ 6 ((x) - r(x), since r(y) 2 r(y)
TRUE because r'(x) > r(x).
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Splaying

» To sum up:
= No rotation: a =1
» Zigia<6 (@) -r(x) +1
= Zig-zig: a <6 (r(x) — r(x))
= Zig-zag: a<4 (r(x) - r(x))
= Total amortized time at most 6 (r(t) — r(x)) + 1 = O(log n)

« Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.
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» We know how to deal with isolated paths.

« How to deal with paths within a tree?

Dynamic Trees
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+ Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.
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paths connected by dashed edges.
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» Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

Dynamic Trees
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» Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

» Itisunique.

Dynamic Trees

» Main idea: partition the vertices in a tree into disjoint solid




Dynamic Trees

«+ Solid paths:
= Represented as binary trees (as seen before).
= Parent pointer of root is the outgoing dashed edge.
= Hierarchy of solid binary trees linked by dashed edges: “virtual
tree”.
+ “Isolated path” operations handle the exposed path.
= The solid path entering the root.

= Dashed pointers go up, so the solid path does not “know” it has
dashed children.

« If a different path is needed:

= expose(v): make entire path from v to the root solid.

Virtual Tree: An Example

Dynamic Trees
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+ Example: expose(v)
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» Example: expose(v)
= Take all edges in the path to the root, ...
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« Example: expose(v)

= ..., make them solid, ...
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« Example: expose(v)
= ...make sure there is no other solid edge incident into the path.
« Uses splice operation.
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Exposing a Vertex

« expose(x): makes the path from x to the root solid.

« Implemented in three steps:
1. Splay within each solid tree in the path from x to root.
2. Splice each dashed edge from x to the root.
— splice makes a dashed become the left solid child;
— If there is an original left solid child, it becomes dashed.
3. Splay on x, which will become the root.

Dynamic Trees

Dynamic Trees: Splice

+ Additional restructuring primitive: splice.

splice(v)
—

= Will only occur when z is the root of a tree.
« Updates:
= Acost’(v) = Acost(v) — Acost(z)
= Acost’ (1) = Acost(u) + Acost(z)
= Amin’(z) = max{0, Amin(v) — Acost’(v), Amin(x) — Acost(x)}

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

Exposing a Vertex: An Example

» expose(a)

pass1

2

(virtual trees)
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Exposing a Vertex: Running Time

» Running time of expose(x):
= proportional to initial depth of x;
= xisrotated all the way to the root;
= wejust need to count the number of rotations;
« will actually find amortized number of rotations: O(log n).
= proof uses the Access Lemma.
«  s(x), r(x) and potential are defined as before;

« In particular, s(x) is the size of the whole subtree rooted at x.
— Includes both solid and dashed edges.

Dynamic Trees

= k: number of dashed edges from x to the root t.
= Amortized costs of each pass:
1. Splay within each solid tree:
— x; vertex splayed on the i-th solid tree.
— amortized cost of i-th splay: 6 (r'(x)) — r(x)) + 1.
— r(x;,) 21r(x), so the sum over all steps telescopes;
— Amortized cost first of pass: 6(r’(x,)-r(x,)) + k<6 logn + k.
2. Splice dashed edges:
— no rotations, no potential changes: amortized cost is zero.
3. Splay on x:
— amortized cost is at most 6 log n + 1.
— xends up in root, so exactly k rotations happen;
— each rotation costs one credit, but is charged two;
— they pay for the extra k rotations in the first pass.

= Amortized number of rotations = O(log n).

Implementing Dynamic Tree Operations

Dynamic Trees

« findcost(v):
= expose v, return cost(v).
« findroot(v):
= expose v;
= find w, the rightmost vertex in the solid subtree containing v;

= splay at w and return w.

o findmin(v):

expose v;

use Acost and Amin to walk down from v to w, the last minimum-
cost node in the solid subtree;

= splay at w and return w.
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Implementing Dynamic Tree Operations

+ addcost(v, x):

= expose v;

= add x to Acost(v);
o link(v,w):

= expose v and w (they are in different trees);

= set p(v)=w (that is, make v a middle child of w).
o cut(v):

= expose v;

= add Acost(v) to Acost(right(v));

= make p(right(v))=null and right(v)=null.

Extensions and Variants

Dynamic Trees

« Simple extensions:
= Associate values with edges:
« just interpret cost(v) as cost(v,p(v)).
= other path queries (such as length):
« change values stored in each node and update operations.
= free (unrooted) trees.
- implement evert operation, which changes the root.

« Not-so-simple extension:
= subtree-related operations:

« requires that vertices have bounded degree;

« Approach for arbitrary trees: “ternarize” them:
— [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees

Alternative Implementation

+ Total time per operation depends on the data structure used to
represent paths:

= Splay trees: O(log n) amortized [ST85].

= Balanced search tree: O(log?n) amortized [ST83].

= Locally biased search tree: O(log n) amortized [ST83].

= Globally biased search trees: O(log n) worst-case [ST83].

« Biased search trees:
= Support leaves with different “weights”.

= Some solid leaves are “heavier” because they also represent
subtrees dangling from it from dashed edges.

= Much more complicated than splay trees.
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