
princeton university F’02 cos 597D: a theorist’s toolkit

Lecture 7: Markov Chains and Random Walks

Lecturer: Sanjeev Arora Scribe:Elena Nabieva

1 Basics

A Markov chain is a discrete-time stochastic process on n states defined in terms of a
transition probability matrix (M) with rows i and columns j.

M =
(
Pij

)
A transition probability Pij corresponds to the probability that the state at time step t + 1
will be j, given that the state at time t is i. Therefore, each row in the matrix M is a
distribution and ∀i, j ∈ SPij ≥ 0 and

∑
j Pij = 1.

Let the initial distribution be given by the row vector x ∈ Rn, xi ≥ 0 and
∑

i xi = 1.
After one step, the new distribution is xM. It is easy to see that xM is again a distribution.
Sometimes it is useful to think of x as describing a certain amount fluid sitting at each node,
such that the sum of the amounts is 1. After one step, the fluid sitting at node i distributes
to its neighbors, such that Pij fraction goes to j.

We stress that the evolution of a Markov chain is memoryless: the transition probability
Pij depends only on the state i and not on the time t or the sequence of transititions taken
before this time.

Suppose we take two steps in this Markov chain. The memoryless property implies that
the probability of going from i to j is

∑
k PikPkj , which is just the (i, j)th entry of the

matrix M2. In general taking t steps in the Markov chain corresponds to the matrix M t.

Definition 1 A distribution π for the Markov chain M is a stationary distribution if
πM = π.

Note that an alternative statement is that π is an eigenvector which has all nonnegative
coordinates and whose corresponding eigenvalue is 1.

Example 1 Consider a Markov chain defined by the following random walk on the nodes
of an n-cycle. At each step, stay at the same node with probability 1/2. Go left with
probability 1/4 and right with probability 1/4.

The uniform distribution, which assigns probability 1/n to each node, is a stationary
distribution for this chain, since it is unchanged after applying one step of the chain.

Definition 2 A Markov chain M is ergodic if there exists a unique stationary distribution
π and for every (initial) distribution x the limit limt→∞ xMt = π.

Theorem 1
The following are necessary and sufficient conditions for ergodicity:

1. connectivity: ∀i, j : Mt(i, j) > 0 for some t.
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2. aperiodicity: ∀i : gcd{t : Mt(i, j) > 0} = 1.

Remark 1 Clearly, these conditions are necessary. If the Markov chain is disconnected it
cannot have a unique stationary distribution —there is a different stationary distribution for
each connected component. Similarly, a bipartite graph does not have a unique distribution:
if the initial distribution places all probability on one side of the bipartite graph, then the
distribution at time t oscillates between the two sides depending on whether t is odd or
even. Note that in a bipartite graph gcd{t : Mt(i, j) > 0} ≥ 2. The sufficiency of these
conditions is proved using eigenvalue techniques (for inspiration see the analysis of mixing
time later on).

Both conditions are easily satisfied in practice. In particular, any Markov chain can be
made aperiodic by adding self-loops assigned probability 1/2.

Definition 3 An ergodic Markov chain is reversible if the stationary distribution π satisfies
for all i, j, πiPij = πjPji.

Uses of Markov Chains. A Markov Chain is a very convenient way to model many sit-
uations where the “memoryless” property makes sense. Examples including communication
theory (Markovian sources), linguistics (Markovian models of language production), speech
recognition, internet search (Google’s Pagerank algorithm is based upon a Markovian model
of a random surfer).

2 Mixing Times

Informally, the mixing time of a Markov chain is the time it takes to reach “nearly uniform”
distribution from any arbitrary starting distribution.

Definition 4 The mixing time of an ergodic Markov chain M is t if for every starting
distribution x, the distribution xM t satisfies

∣∣xM t − π
∣∣
1
≤ 1/4. (Here |·|1 denotes the `1

norm and the constant “1/4” is arbitrary.)

The next exercise clarifies why we are interested in `1 norm.

Exercise 1 For any distribution π on {1, 2, . . . , N}, and S ⊆ {1, 2, . . . , N} let π(S) =∑
i∈S πi. Show that for any two distributions π, π′,∣∣π − π′

∣∣
1

= 2 max
S⊆{1,...,N}

∣∣π(S)− π′(S)
∣∣ . (1)

Here is another way to restate the property in (1). Suppose A is some deterministic
algorithm (we place no bounds on its complexity) that, given any number i ∈ {1, 2, . . . , N},
outputs Yes or No. If |π − π′|1 ≤ ε then the probability that A outputs Yes on a random
input drawn according to π cannot be too different from the probability it outputs Yes on an
input drawn according to π′. For this reason, `1 distance is also called statistical difference.

We are interested in analysing the mixing time so that we can draw a sample from the
stationary distribution.
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Example 2 (Mixing time of a cycle) Consider an n-cycle, i.e., a Markov chain with n states
where, at each state, Pr(left) = Pr(right) = Pr(stay) = 1/3.

Suppose the initial distribution concentrates all probability at state 0. Then t steps
correspond to about 2t/3 random coin tosses and the index of the final state is

(#(Heads) − #(Tails)) (mod n).

Clearly, it takes Ω(n2) steps for the walk to reach the other half of the circle with any
reasonable probability, and the mixing time is Ω(n2). We will later see that this lowerbound
is fairly tight.

2.1 Approximate Counting and Sampling

Markov chains allow one to sample from very nontrivial sets, provided we know how to find
at least one element of this set. The idea is to define a Markov chain whose state space is
the same as this set. The Markov chain is such that it has a unique stationary distribution,
which is uniform. We know how to find one element of the set. We do a walk according
to the Markov chain with this as the starting point, and after T = O(mixing time) steps,
output the node we are at. This is approximately a random sample from the set. We
illustrate this idea later. First we discuss why sampling from large sets is important.

Usually this set has exponential size set and it is only given implicitly. We give a few
examples of some interesting sets.

Example 3 (Perfect matchings) For some given graph G = (V,E) the set of all perfect
matchings in G could be exponentially large compared to the size of the graph, and is only
know implicitly. We know how to generate some element of this set, since we can find a
perfect matching (if one exists) in polynomial time. But how do we generate a random
element?

Example 4 (0 − 1 knapsack) Given a1 . . . an, b ∈ Z+, the set of vectors (xi, . . . , xn) s.t.∑
aixi ≤ b.

In both cases, determining the exact size of the set is in #P (the complexity class corre-
sponding to counting the number of solutions to an NP problem). In fact, we have the
following.

Theorem 2 (Valiant, late 1970s)
If there exist a polynomial-time algorithm for counting the number of perfect matchings or
the number of solutions to the 0 − 1 knapsack counting problem, then P = NP (in fact,

P = P#P).

Valiant’s Theorem does not rule out finding good approximations to this problem.

Definition 5 A Fully Polynomial Randomized Approximation Scheme (FPRAS) is a ran-
domized algorithm, which for any ε finds an answer in time polynomial in (n

ε log 1
δ ) that is

correct within a multiplicative factor (1+ε) with probability (1-δ).

It turns out that approximate counting is equivalent to approximate sampling.
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Theorem 3 (Jerrum, Valiant, Vazirani, 1984)
If we can sample almost uniformly, in polynomial time, from A = {(x1, . . . , xn) :

∑
aixi ≤

b}, then we can design an FPRAS for the knapsack counting problem.
Conversely, given an FPRAS for knapsack counting, we can draw an almost uniform

sample from A.

Remark 2 By “sampling almost uniformly” we mean having a sampling algorithm whose
output distribution has `1 distance exp(−n2) (say) from the uniform distribution. For ease
of exposition, we think of this as a uniform sample.

Proof: We first show how to count approximately assuming there is a polynomial time
sampling algorithm. The idea is simple though the details require some care (which we
suppress here). Suppose we have a sampling algorithm for knapsack. Draw a few samples
from A, and observe what fraction feature x1 = 0. Say it is p. Let A0 be the set of
solutions with x1 = 0. Then p = |A0| / |A|. Now since A0 is the set of (x2, . . . , xn) such
that

∑
i≥2 aixi ≤ b − a1x1, it is also the set of solutions of a knapsack problem, but with

one fewer variable. Using the algorithm recursively, assume we can calculate |A0|. Then we
can calculate

|A| = |A0| /p.

Now if we do not know |A0| , p accurately but up to some accuracy, say (1 + ε). So we
will only know |A| up to accuracy (1 + ε)2 ≈ 1 + 2ε.

Actually the above is not accurate, since it ignores the possibility that p is so small that
we never see an element of A0 when we draw poly(n) samples from A. However, in that
case, the set A1 = A \A0 must be at least 1/2 of A and we can estimate its size. Then we
proceed in the rest of the algorithm using A1.

Therefore, by choosing ε appropriately so that (1 + ε)n is small, and using the Chernoff
bound, we can achieve the desired bound on the error in polynomial time.

The converse is similar. To turn a counting algorithm into a sampling algorithm, we need
to show how to output a random member of A. We do this bit by bit, first outputting x1,
then x2, and so on. To output x1, output 0 with probability p and 1 with probablity 1− p,
where p = |A0| / |A| is calculated by calling the counting algorithm twice. Having output
x1 with the correct probability, we are left with a sampling problem on n − 1 variables,
which we solve recursively. Again, we need some care because we only have an approximate
counting algorithm instead of an exact algorithm. Since we need to count the approximate
counting algorithm only 2n times, an error of (1 + ε) each time could turn into an error of
(1 + ε)2n, which is about 1 + 2ε. 2

Thus to count approximately, it suffices to sample from the uniform distribution. We
define a Markov chain M on A whose stationary distribution is uniform. Then we show
that its mixing time is poly(n).

The Markov chain is as follows. If the current node is (x1, . . . , xn) (note a1x1 + a2x2 +
. . . + anxn ≤ b) then

1. with probability 1/2 remain at the same node

2. else pick i ∈ {1, . . . , n}.
Let y = (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn). If y ∈ A, go there. Else stay put.
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Note that M is

1. aperiodic because of self-loops

2. connected because every sequence can be turned into the zero vector in a finite number
of transformations, i.e., every node is connected to ~0.

Therefore, M is ergodic, i.e., has a unique stationary distribution. Since the uniform dis-
tribution is stationary, it follows that the stationary distribution of M is uniform.

Now the question is: how fast does M converge to the uniform distribution? If M mixes
fast, we can get an efficient approximation algorithm for the knapsack counting: we get the
solution by running M for the mixing time and sampling from the resulting distribution
after the mixing time has elapsed.

Theorem 4
(Morris-Sinclair, 1999): The mixing time for M is O(n8).

Fact (see our remark later in our analysis of mixing time): running the M for a bit
longer than the mixing time results in a distribution that is extremely close to uniform.

Thus, we get the following sampling algorithm:

1. Start with the zero vector as the initial distribution of M .

2. Run M for O(n9) time.

3. output the node at which the algorithm stops.

This results in a uniform sampling from A.
Thus Markov chains are useful for sampling from a distribution. Often, we are unable to

prove any useful bounds on the mixing time (this is the case for many Markov chains used
in simulated annealing and the Metropolis algorithm of statistical physics) but nevertheless
in practice the chains are found to mix rapidly. Thus they are useful even though we do
not have a proof that they work.

3 Bounding the mixing time

For simplicity we restrict attention to regular graphs.
Let M be a Markov chain on a d-regular undirected graph with an adjacency matrix A.

Assume that M is ergodic and that d includes any self-loops.
Then, clearly M = 1

dA.
Since M is ergodic, and since 1

n
~1 is a stationary distribution, then 1

n
~1 is the unique

stationary distribution for M .
The question is how fast does M convege to 1

n
~1? Note that if x is a distribution, x can

be written as

x = ~1
1
n

+
n∑

i=2

αiei
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where ei are the eigenvectors of M which form an orthogonal basis and 1 is the first eigen-
vector with eigenvalue 1. (Clearly, x can be written as a combination of the eigenvectors;

the observation here is that the coefficient in front of the first eigenvector ~1 is ~1 · x/
∣∣∣~1∣∣∣2

2

which is 1
n

∑
i xi = 1

n .)

M tx = M t−1(Mx)

= M t−1(
1
n
~1 +

n∑
i=2

αiλiei)

= M t−2(M(
1
n
~1 +

n∑
i=2

αiλiei))

. . .

=
1
n
~1 +

n∑
i=2

αiλ
t
iei

Also

‖
n∑

i=2

αiλ
t
iei‖2 ≤ λt

max

where λmax is the second largest eigenvalue of M . (Note that we are using the fact that
the total `2 norm of any distribution is

∑
i x

2
i ≤

∑
i xi = 1.)

Thus we have proved
∣∣M tx− 1

n1
∣∣
2
≤ λt

max. Mixing times were defined using `1 distance,
but Cauchy Schwartz inequality relates the `2 and `1 distances: |p|1 ≤

√
n |p|2. So we have

proved:

Theorem 5
The mixing time is at most O( log n

λmax
).

Note also that if we let the Markov chain run for O(k log n/λmax) steps then the distance
to uniform distribution drops to exp(−k). This is why we were not very fussy about the
constant 1/4 in the definition of the mixing time earlier.

Finally, we recall from the last lecture: for S ⊂ V , V ol(S) =
∑

i∈S di, where di is the
degree of node i, the Cheeger Constant is

hG = min
S⊂V,vol(S)≤V ol(V )

2

∣∣E(S, S
∣∣

V ol(S)

If µ is the smallest nonzero eigenvalue of the Laplacian L of M , then

2hG ≥ µ ≥
h2

G

2
The Laplacian for our graph is

L = I −M

Therefore,
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spec(L) = {0 = µ1 ≤ µ2 ≤ . . . ≤ µn}

and

spec(M) = {1 = 1− µ1 ≥ 1− µ2 ≥ . . . ≥ 1− µn}

Note that λmax = (1− µ2)t.
Therefore,

‖
n∑

i=2

αiλ
t
iei‖2 ≤ (1−

h2
G

2
)t√n

.
and we obtain the Jerrum-Sinclair inequality:
‖M tx− 1

n
~1‖2 ≤ (1− h2

G
2 )t√n.

Examples:

1. For n-cycle: λmax = (1− c
n2 )t, mixing time ≈ O(n2 log n) (c is some constant).

2. For a hypercube on 2n nodes (with self-loops added), λmax = (1 − c
n) (this was a

homework problem), so mixing time ≈ O(n log n) (c is some constant).

Observe that the mixing time is much smaller than the number of nodes, i.e., the random
walk does not visit all nodes.

Finally, we note that random walks also give a randomized way to check s−t connectivity
(for undirected graphs) in logarithmic space, a surprising result since the usual method of
checking s− t connectivity, namely, breadth-first-search, seems to inherently require linear
space.

The main idea is that a random walk on a connected graph on n nodes mixes in O(n4)
time (the Cheeger constant must be at least 1/n2) and so a logarithmic space algorithm
can just do a random walk for O(n2 log n) steps (note that space O(log n) is required is
just to store the current node and a counter for the number of steps) starting from s, and
if it never sees t, it can output reject. This answer will be correct with high probability.
This application of random walks by Alleliunas, Karp, Karmarkar, Lipton and Lovasz 1979
was probably one of the first in theoretical computer science and it has been the subject of
much further work recently.

4 Analysis of Mixing Time for General Markov Chains

Thanks to Satyen Kale for providing this additional note
In the class we only analysed random walks on d-regular graphs and showed that they

converge exponentially fast with rate given by the second largest eigenvalue of the transition
matrix. Here, we prove the same fact for general ergodic Markov chains. We need a lemma
first.
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Lemma 6
Let M be the transition matrix of an ergodic Markov chain with stationary distribution π
and eigenvalues λ1(= 1) ≥ λ2 ≥ . . . ≥ λn, corresponding to eigenvectors v1(= π), v2, . . . vn.
Then for any k ≥ 2,

vk
~1 = 0.

Proof: We have vkM = λkvk. Mulitplying by ~1 and noting that M~1 = ~1, we get

vk
~1 = λkvk

~1.

Since the Markov chain is ergodic, λk 6= 1, so vk
~1 = 0 as required. 2

We are now ready to prove the main result concerning the exponentially fast convergence
of a general ergodic Markov chain:

Theorem 7
In the setup of the lemma above, let λ = max {|λ2|, |λn|}. Then for any initial distribution
x, we have

||xM t − π||2 ≤ λt||x||2.

Proof: Write x in terms of v1, v2, . . . , vn as

x = α1π +
n∑

i=2

αivi.

Multiplying the above equation by ~1, we get α1 = 1 (since x~1 = π~1 = 1). Therefore
xM t = π +

∑n
i=2 αiλ

t
ivi, and hence

||xM t − π||2 ≤ ||
n∑

i=2

αiλ
t
ivi||2 (2)

≤ λt
√

α2
2 + · · ·+ α2

n (3)

≤ λt||x||2, (4)

as needed. 2


