Algorithms for Large/Real-time
Data Set

Lecturer: Sanjeev Arora, COS 521, Fall 2005

Scribe Notes: Chee Wei Tan

1 Computing Frequency Moments

We begin with an example: Suppose we have a router that wants to compute
the frequency moments of Internet Protocol (IP) destination addresses from
a sequence of incoming data packets in real-time. Each data item has a label
i € {1,2,...,n}. In our example, label i corresponds to an IP destination
address. Let m; be the number of items with label ¢. Define
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Our goal is to compute Fy, k=1,2,....

Computing Fj is trivial as we only need to keep a counter for each data
item. Space requirement is O(log A) where A is the length of the sequence
of data. Then, how do we compute F5? A trivial approach is to maintain a
counter for each m;, but the space complexity becomes O(nlog A).

We describe below a (1 + €) approximation algorithm to compute Fy [1]
by maintaining a single counter variable. It is shown in [1] that the space
complexity is O( for k = 2, and O(n'~1/*) for n > 3, and these
bounds are tight.

Input: A random hash function h that requires a random seed of
O(logn) bits and the label i as input, and ouput a random variable ¢;.

Output: An unbiased estimate of 5.

Step 1: Initialize the counter variable, counter to 0.

Step 2: For each received item with label i, counter <+ counter + ¢;.

At the end of the input sequence, we have the counter value, counter =
D i M€

Before we provide an analysis of the above algorithm, we first introduce
the notion of 4-wise independence of a sequence of random variables.

Definition 1. A sequence of random variables taking values in {—1, 1},
ie., €1,€,...,6, € {—1,1} is 4-wise independent if any 4-tuple of random
variables €;, €;, €, € is jointly independent.
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It can be shown that a 4-wise independence sequence of random variables
is also k-wise independent for k less than 4.

Assuming that the sequence of random variables €; satisfies 4-wise inde-
pendence, we show that the above algorithm is an unbiased estimator of the
expected value of F.
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Taking expectation over our choice of the random seed,
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where the last equality follows from the fact that e; and ¢; are pairwise
independent for ¢ # j and each of them has zero mean, ie., Ele;e;] =
El[e?] = 1if i = j, and Ele;e;] = Ele;]Elej] = 0 if i # j. Hence, X is an
unbiased estimator of Fj.

To access how good the algorithm gives an estimate of Fs, we compute
the variance of the estimation.

Let Var[X] = E[X?]- (E[X])?
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But,
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where we make use of the fact that Ele;ejere] = 0 if any index of 4,7, k, 1
occurs an odd number of times.
Hence, we have
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where the last inequality follows from the fact that

(So08) ~2% ¥ witui=3 om0

i=1 j=1,j%#1

It is clear from above that the estimation error can be large. However, we
can further reduce the variance of the estimation error by repeated sampling,
i.e., take k independent copies of X and take the average of X1,..., Xj. Let
Y = Zle X;. Then we have

k
EY] =) E[X)=kF, and Varly Z Var[X;] < 2kF3,

i=1

where we make use of the fact that X;’s are independent and the last in-
equality follows from (3). Hence, by Chebyshev’s inequality, the average
sampled value of F5 is

% ~O<E[X] + \/fH)

and we can get a good approximation of (1 & €)Fy by selecting k such that
k > 2/e. The space requirement for repeated sampling is O(2 logn).

For more detailed analysis of computing the frequency moment, please
refer to [1].

2 Dimension Reduction

This section finds practical application in image processing where we want
to store large vectors with each entry containing a pixel value. Suppose
we are given vectors wi, us,...,uy, € R™ where n is very large. We desire
a more compact representation of these vectors, i.e., ull,u;, e ,u/m € R?
where d < n such that

! !
[w; = wjll2 € (1 £ €)|ui — w2,



where ||.||2 denotes the Euclidean norm.
It can be shown that this is possible if d ~ O(%) We next

illustrate an algorithm to compute u;,W that gives a good approximation
to the above criteria.
Step 1: Pick d random vectors of dimension n, e.g.,
T T T
[611 €12 ... 6ln] > [621 €2 ... 6271] Yot [Gnl €n2 ... 6nn]
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where €;; € {—1,1} are independent random variables for all ¢ and j, and
[.]T denotes the transpose operator.

Step 2: For each vector u, use the random linear map R™ — R% in Step
1 to get a column vector

u, = [[611 €12 e Eln]T’LL N [6n1 €En2 N Enn]T’LL]T.
For every two vector u' and v obtained above, let
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Taking expectation,
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But we need () different ||u—uvl|2 such that ||u;—v;|]2 < (1%e€)|lui—vjl|2.
Lastly, we can use Chernoff bound to show that

1
Pr{any of the <7;1> different ||u — vl|2 deviates by more than14+ e} < —.
m

For more details, please refer to Sanjeev’s online note on dimension re-
duction.
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