Algorithms for Large/Real-time Data Set

Lecturer: Sanjeev Arora, COS 521, Fall 2005

Scribe Notes: Chee Wei Tan

1 Computing Frequency Moments

We begin with an example: Suppose we have a router that wants to compute the frequency moments of Internet Protocol (IP) destination addresses from a sequence of incoming data packets in real-time. Each data item has a label $i \in \{1, 2, ..., n\}$. In our example, label *i* corresponds to an IP destination address. Let m_i be the number of items with label *i*. Define

$$F_k = \sum_{i=1}^n m_i^k.$$

Our goal is to compute F_k , $k = 1, 2, \ldots$

Computing F_1 is trivial as we only need to keep a counter for each data item. Space requirement is $O(\log A)$ where A is the length of the sequence of data. Then, how do we compute F_2 ? A trivial approach is to maintain a counter for each m_i , but the space complexity becomes $O(n \log A)$.

We describe below a $(1 + \epsilon)$ approximation algorithm to compute F_2 [1] by maintaining a single counter variable. It is shown in [1] that the space complexity is $O(\frac{1}{\epsilon \log n \log})$ for k = 2, and $O(n^{1-1/k})$ for $n \ge 3$, and these bounds are tight.

Input: A random hash function h that requires a random seed of $O(\log n)$ bits and the label i as input, and ouput a random variable ϵ_i .

Output: An unbiased estimate of F_2 .

Step 1: Initialize the counter variable, counter to 0.

Step 2: For each received item with label *i*, counter \leftarrow counter $+ \epsilon_i$.

At the end of the input sequence, we have the counter value, $counter = \sum_{i=1}^{n} m_i \epsilon_i$.

Before we provide an analysis of the above algorithm, we first introduce the notion of 4-wise independence of a sequence of random variables.

Definition 1. A sequence of random variables taking values in $\{-1, 1\}$, i.e., $\epsilon_1, \epsilon_2, \ldots, \epsilon_n \in \{-1, 1\}$ is 4-wise independent if any 4-tuple of random variables $\epsilon_i, \epsilon_j, \epsilon_k, \epsilon_l$ is jointly independent.

It can be shown that a 4-wise independence sequence of random variables is also k-wise independent for k less than 4.

Assuming that the sequence of random variables ϵ_i satisfies 4-wise independence, we show that the above algorithm is an unbiased estimator of the expected value of F_2 .

Let
$$X = (\text{counter})^2$$

= $\left(\sum_{i=1}^n m_i \epsilon_i\right)^2$.

Taking expectation over our choice of the random seed,

Let
$$E[X] = E\left[\left(\sum_{i=1}^{n} m_i \epsilon_i\right)^2\right]$$

 $= E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} m_i m_j \epsilon_i \epsilon_j\right]$
 $= \sum_{i=1}^{n} \sum_{j=1}^{n} m_i m_j E[\epsilon_i \epsilon_j]$
 $= \sum_{i=1}^{n} m_i^2,$ (1)

where the last equality follows from the fact that ϵ_i and ϵ_j are pairwise independent for $i \neq j$ and each of them has zero mean, i.e., $E[\epsilon_i \epsilon_j] = E[\epsilon_i^2] = 1$ if i = j, and $E[\epsilon_i \epsilon_j] = E[\epsilon_i]E[\epsilon_j] = 0$ if $i \neq j$. Hence, X is an unbiased estimator of F_2 .

To access how good the algorithm gives an estimate of F_2 , we compute the variance of the estimation.

Let
$$Var[X] = E[X^2] - (E[X])^2$$

 $= E\left[(\sum_{i=1}^n m_i \epsilon_i)^4\right] - \left(\sum_{i=1}^n m_i^2\right)^2$
 $= E\left[\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n m_l m_j m_k m_l \epsilon_i \epsilon_j \epsilon_k \epsilon_l\right] - \left(\sum_{i=1}^n m_i^4 - 2\sum_{i=1}^n \sum_{j=1, j \neq i}^n m_i^2 m_j^2\right)$

But,

$$E\left[\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}\sum_{l=1}^{n}m_{i}m_{j}m_{k}m_{l}\epsilon_{i}\epsilon_{j}\epsilon_{k}\epsilon_{l}\right] = E\left[\sum_{i=1}^{n}m_{i}^{4}\epsilon_{i}^{4}\right] + 6E\left[\sum_{i=1}^{n}\sum_{j=1,j\neq i}^{n}m_{i}^{2}m_{j}^{2}\epsilon_{i}^{2}\epsilon_{j}^{2}\right] \\ = \sum_{i=1}^{n}m_{i}^{4} + 6\sum_{i=1}^{n}\sum_{j=1,j\neq i}^{n}m_{i}^{2}m_{j}^{2}$$
(2)

where we make use of the fact that $E[\epsilon_i \epsilon_j \epsilon_k \epsilon_l] = 0$ if any index of i, j, k, l occurs an odd number of times.

Hence, we have

$$Var[X] = \sum_{i=1}^{n} m_i^4 + 6 \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} m_i^2 m_j^2 - (\sum_{i=1}^{n} m_i^4 - 2 \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} m_i^2 m_j^2)$$

= $4 \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} m_i^2 m_j^2 \le 2(E[X])^2 = 2F_2^2,$ (3)

where the last inequality follows from the fact that

$$\left(\sum_{i=1}^{n} m_i^2\right)^2 - 2\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} m_i^2 m_j^2 = \sum_{i=1}^{n} m_i^4 \ge 0.$$

It is clear from above that the estimation error can be large. However, we can further reduce the variance of the estimation error by *repeated sampling*, i.e., take k independent copies of X and take the average of X_1, \ldots, X_k . Let $Y = \sum_{i=1}^k X_i$. Then we have

$$E[Y] = \sum_{i=1}^{k} E[X_i] = kF_2$$
 and $Var[Y] = \sum_{i=1}^{k} Var[X_i] \le 2kF_2^2$,

where we make use of the fact that X_i 's are independent and the last inequality follows from (3). Hence, by Chebyshev's inequality, the average sampled value of F_2 is

$$\frac{Y}{k} \sim O\left(E[X] \pm \frac{\sqrt{2k}F_2}{k}\right)$$

and we can get a good approximation of $(1 \pm \epsilon)F_2$ by selecting k such that $k \ge 2/\epsilon^2$. The space requirement for repeated sampling is $O(\frac{1}{\epsilon} \log n)$.

For more detailed analysis of computing the frequency moment, please refer to [1].

2 Dimension Reduction

This section finds practical application in image processing where we want to store large vectors with each entry containing a pixel value. Suppose we are given vectors $u_1, u_2, \ldots, u_m \in \mathbf{R}^n$ where *n* is very large. We desire a more compact representation of these vectors, i.e., $u'_1, u'_2, \ldots, u'_m \in \mathbf{R}^d$ where $d \ll n$ such that

$$\|u_{i}' - u_{j}'\|_{2} \in (1 \pm \epsilon) \|u_{i} - u_{j}\|_{2},$$

where $\|.\|_2$ denotes the Euclidean norm.

It can be shown that this is possible if $d \sim O(\frac{\log m + \log n}{\epsilon^2})$. We next illustrate an algorithm to compute $u'_i, \forall i$ that gives a good approximation to the above criteria.

Step 1: Pick d random vectors of dimension n, e.g.,

$$\begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \dots & \epsilon_{1n} \end{bmatrix}^T, \begin{bmatrix} \epsilon_{21} & \epsilon_{22} & \dots & \epsilon_{2n} \end{bmatrix}^T, \dots, \begin{bmatrix} \epsilon_{n1} & \epsilon_{n2} & \dots & \epsilon_{nn} \end{bmatrix}^T,$$

where $\epsilon_{ij} \in \{-1, 1\}$ are independent random variables for all *i* and *j*, and $[.]^T$ denotes the transpose operator.

Step 2: For each vector u, use the random linear map $\mathbf{R}^n \to \mathbf{R}^d$ in Step 1 to get a column vector

$$u' = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \dots & \epsilon_{1n} \end{bmatrix}^T u \dots \begin{bmatrix} \epsilon_{n1} & \epsilon_{n2} & \dots & \epsilon_{nn} \end{bmatrix}^T u \end{bmatrix}^T.$$

For every two vector u' and v' obtained above, let

$$||u' - v'||_2^2 = \sum_{l=1}^d \left(\sum_{i=1}^n \epsilon_{il}(u_i - v_i)\right)^2.$$

Taking expectation,

$$E[\|u' - v'\|_{2}^{2}] = E\left[\sum_{l=1}^{d} \left(\sum_{i=1}^{n} \epsilon_{il}(u_{i} - v_{i})\right)^{2}\right]$$

$$= d\sum_{i=1}^{n} (u_{i} - v_{i})^{2}$$

$$= d\|u - v\|_{2}^{2}.$$
 (4)

But we need $\binom{m}{2}$ different $||u-v||_2$ such that $||u'_i - v'_j||_2 \le (1\pm\epsilon)||u_i - v_j||_2$. Lastly, we can use Chernoff bound to show that

$$Pr\{\text{any of the } \binom{m}{2} \text{ different } \|u - v\|_2 \text{ deviates by more than } 1 \pm \epsilon\} < \frac{1}{m^3}.$$

For more details, please refer to Sanjeev's online note on dimension reduction.

References

 Alan, Matias and Szegedy "The space complexity of approximating the frequency moments", STOC, 1996