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1 Computing Frequency Moments

We begin with an example: Suppose we have a router that wants to compute
the frequency moments of Internet Protocol (IP) destination addresses from
a sequence of incoming data packets in real-time. Each data item has a label
i ∈ {1, 2, . . . , n}. In our example, label i corresponds to an IP destination
address. Let mi be the number of items with label i. Define

Fk =
n

∑

i=1

mk
i .

Our goal is to compute Fk, k = 1, 2, . . . .
Computing F1 is trivial as we only need to keep a counter for each data

item. Space requirement is O(log A) where A is the length of the sequence
of data. Then, how do we compute F2? A trivial approach is to maintain a
counter for each mi, but the space complexity becomes O(n log A).

We describe below a (1 + ε) approximation algorithm to compute F2 [1]
by maintaining a single counter variable. It is shown in [1] that the space
complexity is O( 1

ε log n log
) for k = 2, and O(n1−1/k) for n ≥ 3, and these

bounds are tight.
Input: A random hash function h that requires a random seed of

O(log n) bits and the label i as input, and ouput a random variable εi.
Output: An unbiased estimate of F2.
Step 1: Initialize the counter variable, counter to 0.
Step 2: For each received item with label i, counter← counter+ εi.
At the end of the input sequence, we have the counter value, counter =

∑n
i=1 miεi.
Before we provide an analysis of the above algorithm, we first introduce

the notion of 4-wise independence of a sequence of random variables.
Definition 1. A sequence of random variables taking values in {−1, 1},

i.e., ε1, ε2, . . . , εn ∈ {−1, 1} is 4-wise independent if any 4-tuple of random
variables εi, εj , εk, εl is jointly independent.
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It can be shown that a 4-wise independence sequence of random variables
is also k-wise independent for k less than 4.

Assuming that the sequence of random variables εi satisfies 4-wise inde-
pendence, we show that the above algorithm is an unbiased estimator of the
expected value of F2.

Let X = (counter)2

=

( n
∑

i=1

miεi

)2

.

Taking expectation over our choice of the random seed,

Let E[X] = E

[

(

n
∑

i=1

miεi)
2

]

= E

[ n
∑

i=1

n
∑

j=1

mimjεiεj

]

=

n
∑

i=1

n
∑

j=1

mimjE[εiεj]

=

n
∑

i=1

m2
i , (1)

where the last equality follows from the fact that εi and εj are pairwise
independent for i 6= j and each of them has zero mean, i.e., E[εiεj] =
E[ε2

i ] = 1 if i = j, and E[εiεj ] = E[εi]E[εj ] = 0 if i 6= j. Hence, X is an
unbiased estimator of F2.

To access how good the algorithm gives an estimate of F2, we compute
the variance of the estimation.

Let V ar[X] = E[X2]− (E[X])2

= E

[

(
n

∑

i=1

miεi)
4

]

−
( n

∑

i=1

m2
i

)2

= E

[ n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

mimjmkmlεiεjεkεl

]

−
( n

∑

i=1

m4
i − 2

n
∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
j

)

But,

E

[ n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

mimjmkmlεiεjεkεl

]

= E

[ n
∑

i=1

m4
i ε

4
i

]

+ 6E

[ n
∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
jε

2
i ε

2
j

]

=
n

∑

i=1

m4
i + 6

n
∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
j (2)
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where we make use of the fact that E[εiεjεkεl] = 0 if any index of i, j, k, l
occurs an odd number of times.

Hence, we have

V ar[X] =
n

∑

i=1

m4
i + 6

n
∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
j − (

n
∑

i=1

m4
i − 2

n
∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
j)

= 4
n

∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
j ≤ 2(E[X])2 = 2F 2

2 , (3)

where the last inequality follows from the fact that

( n
∑

i=1

m2
i

)2

− 2

n
∑

i=1

n
∑

j=1,j 6=i

m2
i m

2
j =

n
∑

i=1

m4
i ≥ 0.

It is clear from above that the estimation error can be large. However, we
can further reduce the variance of the estimation error by repeated sampling,
i.e., take k independent copies of X and take the average of X1, . . . , Xk. Let
Y =

∑k
i=1 Xi. Then we have

E[Y ] =

k
∑

i=1

E[Xi] = kF2 and V ar[Y ] =

k
∑

i=1

V ar[Xi] ≤ 2kF 2
2 ,

where we make use of the fact that Xi’s are independent and the last in-
equality follows from (3). Hence, by Chebyshev’s inequality, the average
sampled value of F2 is

Y

k
∼ O

(

E[X] ±
√

2kF2

k

)

and we can get a good approximation of (1 ± ε)F2 by selecting k such that
k ≥ 2/ε2. The space requirement for repeated sampling is O( 1

ε log n).
For more detailed analysis of computing the frequency moment, please

refer to [1].

2 Dimension Reduction

This section finds practical application in image processing where we want
to store large vectors with each entry containing a pixel value. Suppose
we are given vectors u1, u2, . . . , um ∈ Rn where n is very large. We desire
a more compact representation of these vectors, i.e., u

′

1, u
′

2, . . . , u
′

m ∈ Rd

where d� n such that

‖u′

i − u
′

j‖2 ∈ (1± ε)‖ui − uj‖2,
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where ‖.‖2 denotes the Euclidean norm.
It can be shown that this is possible if d ∼ O( log m+log n

ε2
). We next

illustrate an algorithm to compute u
′

i,∀i that gives a good approximation
to the above criteria.

Step 1: Pick d random vectors of dimension n, e.g.,

[ε11 ε12 . . . ε1n]T , [ε21 ε22 . . . ε2n]T , . . . , [εn1 εn2 . . . εnn]T ,

where εij ∈ {−1, 1} are independent random variables for all i and j, and
[.]T denotes the transpose operator.

Step 2: For each vector u, use the random linear map Rn → Rd in Step
1 to get a column vector

u
′

= [[ε11 ε12 . . . ε1n]T u . . . [εn1 εn2 . . . εnn]T u]T .

For every two vector u
′

and v
′

obtained above, let

‖u′ − v
′‖22 =

d
∑

l=1

( n
∑

i=1

εil(ui − vi)

)2

.

Taking expectation,

E[‖u′ − v
′‖22] = E

[ d
∑

l=1

( n
∑

i=1

εil(ui − vi)

)2]

= d

n
∑

i=1

(ui − vi)
2

= d‖u− v‖22. (4)

But we need
(m

2

)

different ‖u−v‖2 such that ‖u′

i−v
′

j‖2 ≤ (1±ε)‖ui−vj‖2.
Lastly, we can use Chernoff bound to show that

Pr{any of the

(

m

2

)

different ‖u− v‖2 deviates by more than 1± ε} <
1

m3
.

For more details, please refer to Sanjeev’s online note on dimension re-
duction.
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