
The Ellipsoid Algorithm for Linear Programming
Lecturer: Sanjeev Arora, COS 521, Fall 2005

Princeton University
Scribe Notes: Siddhartha Brahma

The Ellipsoid algorithm for linear programming is a specific application of the
ellipsoid method developed by Soviet mathematicians Shor(1970), Yudin and
Nemirovskii(1975). Khachiyan(1979) applied the ellipsoid method to derive
the first polynomial time algorithm for linear programming. Although the
algorithm is theoretically better than the Simplex algorithm, which has an
exponential running time in the worst case, it is very slow practically and not
competitive with Simplex. Nevertheless, it is a very important theoretical
tool for developing polynomial time algorithms for a large class of convex op-
timization problems, which are much more general than linear programming.

We will start of with a few definitions and then consider the actual algorithm.
We will consider general linear programs of the following form defined on
vectors in Rn.

maximize cT x

Ax ≤ b

x ≥ 0

where A is a m× n real constraint matrix and x, c ∈ Rn.

Definition 1. A Hyperplane is defined to be the set of points satisfying
the linear equation ax = b, where a, x, b ∈ Rn.

Definition 2. A Convex Set K ⊆ Rn is a set of points such that ∀x, y ∈ K,
λx+(1−λ)y ∈ K, where λ ∈ [0, 1]. A Convex Body is a closed and bounded
convex set.

A few examples of convex sets and bodies are as follows:
1. Hypercube length l is the set of all x such that 0 ≤ xi ≤ l, 1 ≤ i ≤ n.

2. Ball of radius r around the origin is the set of all x such that
n∑

i=1

x2
i ≤ r2.

3. An axis aligned ellipsoid is the set of all x such that
n∑

i=1

x2
i /a

2
i ≤ 1 where

ai’s are nonzero reals.
4. A general ellipsoid in Rn can be represented by

(x− a)T B(x− a) ≤ 1

1



, where B is a positive semidefinite matrix. (Being positive semidefinite
means B can be written as B = AAT for some n× n real matrix A. This is
equivalent to saying B = Q−1DQ, where Q is a unitary and D is a diagonal
matrix with all positive entries.)
5. The whole space Rn is trivially an infinite convex set.

Evidently each of the constraints in a linear program defines half-spaces
(which are parts of Rn bounded on one side by hyperplanes) and the so-
lution lies in the intersection of these half-spaces. It can be shown easily
that the intersection of a finite number of half-spaces is a convex set, which
may or may not be bounded. We have the following fact about convex sets
which is intuitively clear and not hard to prove.

Observation 3. If K ⊆ Rn is a convex set and p ∈ Rn is a point, then one
of the following holds
(i) p ∈ K
(ii) there is a hyperplane that separates p from K.

This prompts the following definition of a polynomial time Separating Oracle.

Definition 4. A polynomial time Separating Oracle for a convex set K is
a procedure which given x, either tells that x ∈ K or returns a hyperplane
separating x from K. The procedure should run in polynomial time. Note
that from the previous observation, such a plane is guaranteed to exist.

As defined above, the linear programming problem in Rn with m constraints
has inputs given by A, b and an objective vector c. To solve the linear pro-
gram we need to at least read the whole input. Therefore, if the number of
bits to represent the input is L, a polynomial time solution to the problem
would mean a running time of poly(n,m,L).

The problem of optimizing an objective function can be reduced to a series of
feasibility problems as follows. We start of with an estimate of the maximum
value, say c0 and check for the feasibility of the following system

cT x ≥ c0

Ax ≤ b

x ≥ 0

If the system is infeasible, we know that the optimum is lesser than c0. We
may now decrease c0, say by a factor of 2 and check for feasibility again. If
this is true, we know that the optimum lies in [c0/2, c0). This is essentially

2



a binary search to find the optimum with higher accuracies. We get the op-
timum in a number of steps polynomial in the input size, each step being a
call to a feasibility checking algorithm.

Now we can concentrate on the feasibility problem. The Ellipsoid Algo-
rithm solves the feasibility problem in an ingenious way. Let us denote the
convex set defined by the feasible solution space by S. Further, we assume
that the constraints are non-degenerate, so that S is either empty or has a
non-zero volumed denoted by V ol(S). In other words we can find a lower
bound Vl on V ol(S). We start off with an ellipsoid of volume Vu guaranteed
to bound S if it is finite. If V ol(S) is infinite, we start with a suitable Vu

and we will eventually get to a feasible point anyway. In our case, the initial
bounding ellipsoid is a sphere in Rn. A single step of the algorithm either
finds a point in S, in which case we have proved feasibility, or finds another
ellipsoid bounding S that has a volume that is substantially smaller than the
volume of the previous ellipsoid. We iterate on this new ellipsoid. In the
worst case we need to iterate until the volume of the bounding ellipsoid gets
below Vl, in which case we can conclude that the system is infeasible. It turns
out that only a polynomial number of iterations are required in the case of
linear programming. The algorithm does not require an explicit description
of the linear program. All that is required is a polynomial time Separating
Oracle, which checks whether a point lies in S or not, and returns a sep-
arating hyperplane in the latter case. The following high level pseudocode
describes the algorithm.

Input: Bounding ellipsoid E0 for S, Lower bound Vl on V ol(S).
Output: "yes" if the linear program is feasible, "no" otherwise.

Algorithm:

i=0;

while(V ol(Ei) ≥ Vl){
p = Center of Ei;

(ans,H) = SepOracle(p);

if(ans==yes)

return "yes";

else{
Take the separating hyperplane H and let

Ei+1 = minimum volume ellipsoid containing Ei

⋂
H+;

i = i + 1;
}

}
return "no";

3



The running time of the algorithm depends on the complexity of SepOracle,
the time required to find Ei+1 and the ratio Vu/Vl. For linear programming,
SepOracle runs in O(mn) time as all we need to do is check whether p sat-
isfies all the constraints, and return a violating constraint as H(if it exists).
The time needed to find Ei+1 is also polynomial by the following non-trivial
lemma from convex geometry.

i

Lemma 5. The minimum volume ellipsoid surrounding a half ellipsoid (i.e.
Ei

⋂
H+ above) can be calculated in polynomial time and

V ol(Ei+1) ≤
(

1− 1

2n

)
V ol(Ei)

If the while loop in the algorithm runs t times, then by the above lemma(
1− 1

2n

)t

≤ Vu

Vl

⇒ t = O(n log(Vu/Vl))

It can be shown that for a linear program which requires L bits to represent
the input, we can choose Vl = 2−c1nL and Vu = 2c2nL for some constants
c1, c2, which implies t = O(n2L). Therefore, the above algorithm terminates
after O(n2L) iterations, each iteration taking polynomial time, which gives
us an overall running time of poly(n, m,L). For a detailed proof of the above
lemma and other derivations, please refer to Santosh Vempala’s notes on the
course webpage.

Note that the way the algorithm has been presented, it applies to any problem
which has a corresponding SepOracle procedure. If that procedure runs in
polynomial time and we can find suitable Vl, Vu, we will get a polynomial time
algorithm for the corresponding problem. These requirements are satisfied by
a large number of convex optimization problems which makes the Ellipsoid
Algorithm very attractive theoretically.

4


