
Rabin’s algorithm for Byzantine Generals Problem.
Notes by Sanjeev Arora, Fall 1995 (updated Fall 2005)

Byzantine Generals Problem: There are n = 3t + 1 processors and at least
2t + 1 of them are working correctly. (The remaining t could be arbitrarily
misbehaved or faulty.) Initially, processor i holds a bit bi ∈ {0, 1}. The goal
is for them to exchange messages and agree upon a bit bfinal. If all bi for the
good processors were the same, then we require bfinal to be that same bit.
Otherwise there is no hard requirement on what bfinal should be so long as all
good processors agree what it is.

Sometimes this problem is also called Byzantine Agreement. It can be solved
with a deterministic algorithm in poly(n) steps. It is known that no distributed
algorithm exists if the number of faulty processors exceeds n/3.

Now we describe a simple randomized algorithm due to Rabin which assumes
that there is a global random coin that is tossed at each step, and which is
visible to all processors.

The processors maintain at all times a bit, vote, which is initially bi for
processor i. At the start of each round each processor sends its vote value
to every other processor. Each processor examines all 3t + 1 values of vote
it receives (including its own). It identifies maj = the majority bit among
these values of vote, and tally = the number of times it saw this bit among
the vote values. Notice, the values of maj and tally can vary widely among
the processors, since a faulty/malicious processors could try to confuse things
by sending different values of vote to different processors.

Each processor now applies the following algorithm at each step.

Do the following depending upon the value of tally:

1. tally ≥ 2t + 1: Set vote = maj.

2. tally ≤ 2t: Look at global-coin-toss. If it is ‘‘Heads," then

set vote = 1, else set vote = 0.

Proof of Correctness: Note that if all the good processors have the same
initial value, then they all set their votes to this value in the first round. In
all other cases, we show that with probability at least 1/2, all the processors
assign the same value to vote. (Note that as soon as this happens, then from
then on, tally ≥ 2t + 1 for all processors, and so all processors will continue
executing line (1) in the algorithm.)

There are two cases. (i) Some processor sees tally ≥ 2t+1, and maj = b for
some b ∈ {0, 1}. Since only t processors are faulty, we conclude that at least
t + 1 good processors must have sent b as their value of vote. Thus no other
processor will see both tally ≥ 2t + 1 and maj = 1 − b in the same round.
Hence regardless of whether the other processors execute step (1) or (2) in the
above algorithm, the probability is at least 1/2 that they will all set vote to b.

1



(ii) No good processor sees tally ≥ 2t + 1. Then all of them execute step (2),
and with probability 1 set vote to the same value.

It is a homework exercise to modify the algorithm so that processors can
detect when the algorithm has succeeded (namely, all good processors have the
same value of vote).

2


