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NP-hard geometric optimization problems arise in many disciplines. Perhaps
the most famous one is the traveling salesman problem (TSP): given n nodes
in <2 (more generally, in <d), find the minimum length path that visits each
node exactly once. If distance is computed using the Euclidean norm (distance
between nodes (x1, y1) and (x2, y2) is ((x1 − x2)

2 + (y1 − y2)
2)1/2) then the

problem is called Euclidean TSP. More generally the distance could be defined
using other norms, such as `p norms for any p > 1. All these are subcases of the
more general notion of a geometric norm or Minkowski norm. We will refer to
the version of the problem with a general geometric norm as geometric TSP.

Some other NP-hard geometric optimization problems are Minimum Steiner
Tree (“Given n points, find the lowest cost network connecting them”), k-TSP(“Given
n points and a number k, find the shortest salesman tour that visits k points”),
k-MST (“Given n points and a number k, find the shortest tree that contains
k points”), vehicle routing, degree restricted minimum spanning tree, etc. If P 6=
NP, as is widely conjectured, we cannot design polynomial time algorithms to
solve these problems optimally. However, we might be able to design approxima-
tion algorithms: algorithms that compute near-optimal solutions in polynomial
time for every problem instance. For α ≥ 1 we say that an algorithm approxi-
mates the problem within a factor α if it computes, for every instance I, a solu-
tion of cost at most α·OPT(I), where OPT(I) is the cost of the optimum solution
for I. The preceding definition is for minimization problems; for maximization
problems α ≤ 1. Sometimes we use the shortened name “α-approximation algo-
rithm.”

Bern and Eppstein [17] give an excellent survey circa 1995 of approxima-
tion algorithms for geometric problems. For many problems they describe an
α-approximation, where α is some constant that depends upon the problem.
The current survey will concentrate on developments subsequent to 1995, many
of which followed the author’s discovery, in 1996, of a polynomial time approxi-
mation scheme or “PTAS” for many geometric problems —including the TSP—
in constant number of dimensions. (By “constant number of dimensions” we
mean that we fix the dimension d and consider asymptotic complexity as we
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increase n, the number of nodes.) A PTAS is an “ultimate” approximation algo-
rithm, or rather, a sequence of algorithms: for each ε > 0, the sequence contains a
polynomial-time algorithm that approximates the problem within a factor 1+ ε.

Context. Designing approximation algorithms for NP-hard problems is a well-
developed science; see the books by Hochbaum (ed.) [45] and Vazirani [83]. The
most popular method involves solving a mathematical programming relaxation
(either a linear or semidefinite program) and rounding the fractional solution
thus obtained to an integer solution. The bound on the approximation ratio is
obtained by comparing to the fractional optimum. However, such methods have
not led to PTASs.

In fact, work from the last decade on probabilistically checkable proofs (see [9]
and references therein) suggests a deeper reason why PTASs have been difficult
to design: many problems do not have PTAS’s if P 6= NP. (In other words,
there is some fixed γ > 0 such that computing (1 + γ)-approximations for the
problem is NP-hard.) This is true for metric TSP and metric Steiner tree, the
versions of TSP and Steiner tree respectively in which points lie in a metric
space (i.e., distances satisfy the triangle inequality). Trevisan [79] has even shown
that Euclidean TSP in O(log n) dimensions has no PTAS if P 6= NP. Thus the
existence of a PTAS for Euclidean TSP in constant dimensions —one of the
topics of the current survey— is quite surprising1.

These new PTAS’s for geometric problems follow a design methodology rem-
iniscent of those used in some classic PTASs for other (non-geometric) problems.
One proves a “Structure Theorem” about the problem in question, demonstrat-
ing the existence of a (1 + ε)-approximate solution that has an “almost local”
quality (see Section 2 for an example). Such a Structure Theorem appears implic-
itly in descriptions of most earlier PTASs, including the ones for Knapsack [46],
planar graph problems [60,61,12,43,53], and most recently, for scheduling to
minimize average completion time [2,52]. These PTASs involve a simple divide-
and-conquer approach or dynamic programming to optimize over the set of “al-
most local” solutions. We note that even in the context of geometric algorithms,
divide-and-conquer ideas are quite old, though they had not resulted in PTASs
until recently. Specifically, geometric divide and conquer appears in Karp’s dis-
section heuristic [51]; Smith’s 2O(

√
n) time exact algorithm for TSP [77]; Blum,

Chalasani and Vempala’s approximation algorithm for k-MST [21]; and Mata
and Mitchell’s constant-factor approximations for many geometric problems [62].

Surprisingly, the proofs of the structure theorems for geometric problems are
elementary and this survey will describe them essentially completely. We also
survey a more recent result of Rao and Smith [71] that improves the running
time for some problems. We will be concerned only with asymptotics and hence
not with practical implementations. The TSP algorithm of this survey, though
its asymptotic running time is nearly linear, is not competitive with existing
implementations of other TSP heuristics (e.g., [49,4]). But maybe our algorithms
for other geometric problems will be more competitive.

1 In fact, the discovery of this algorithm stemmed from the author’s inability to extend the
results of [9] to Euclidean TSP in constant dimensions.
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One of the goals of the current survey is to serve as a tutorial for the reader
who wishes to design approximation schemes for other geometric problems.We
break the presentation of the PTAS for the TSP into three sections, Sections 2, 3
and 4 with increasingly sophisticated analyses and corresponding improvements
in running time: nO(1/ε), n(log n)O(1/ε), and O(n log n + n · ε−c/ε). One reason
for this three-step presentation is pedagogical: the simpler analyses are easier
to teach, and the simplest analysis — giving an nO(1/ε) time algorithm— may
even be suitable for an undergraduate course. Another reason for this three-step
presentation becomes clearer in Section 5, when we generalize to other geometric
problems. The simplest analysis —since it uses very little that is specific to the
TSP— is the easiest to generalize.

Section 5 is meant as a tutorial on how to apply our techniques to other ge-
ometric problems. We give three illustrative examples —Minimum Steiner Tree,
k-median, and the Minimum Latency Problem, and also include a discussion of
some geometric problems that seem to resist our techniques. Finally, Section 6
summarizes known results about many geometric optimization problem together
with bibliographic references.

Background on geometric approximation As mentioned, for many problems de-
scribed in the current survey, Bern and Eppstein describe approximation algo-
rithms that approximate the problem within some constant factor. (An exception
is k-median, for which no constant factor approximation was known at the time
a PTAS was found [10].) For the TSP, the best previous algorithm was the
Christofides heuristic [25], which approximates the problem within a factor 1.5
in polynomial time. The decision version of Euclidean TSP (“Does a tour of cost
≤ C exist?”) is NP-hard [67,37], but is not known to be in NP because of the
use of square roots in computing the edge costs2. Specifically, there is no known
polynomial-time algorithm that, given integers a1, a2, . . . , an, C, can decide if
∑

i

√
ai ≤ C. )

Arora’s paper gave the first PTASs for many of these problems in 1996.
A few months later Mitchell independently discovered a similar nO(1/ε) time
approximation scheme [65]; this algorithm used ideas from the earlier paper of
Mata and Mitchell [62]. The running time of Arora’s and Mitchell’s algorithms
was nO(1/ε), but Arora later improved the running time of his algorithm to
n(log n)O(1/ε). Mitchell’s algorithm seems to work only in the plane whereas
Arora’s PTAS works for any constant number of dimensions. If dimension d is not
constant but allowed to depend on n, the number of nodes, then the algorithm
takes superpolynomial time that grows to exponential around d = O(log n).
This dependence on dimension seems broadly consistent with complexity results
proved since then. Trevisan [79] has shown that the Euclidean TSP problem
becomes MAX-SNP-hard in O(log n) dimensions, which means —by the results
of [69,9]— that there is a γ > 0 such that approximation within a factor 1+γ is
NP-hard. Thus if the running time of our algorithm were only singly exponential

2 For similar reasons, there is no known polynomial time Turing machine algorithm even for
Euclidean minimum spanning tree. Most papers in computational geometry skirt this issue by
using the Real RAM model.
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in the dimension d (say) then one would have a subexponential algorithm for all
NP problems.

We note that Trevisan’s result extends to TSP with `p norm for any finite
p ≥ 1 [79] and Indyk has extended it for p = ∞ [48]. Similar hardness results
are also proveable for Minimum Steiner Tree and k-median in `1 norm.

1. Introduction to the TSP algorithm

In this section we describe a PTAS for TSP in <2 with `2 norm; the generaliza-
tion to other norms is straightforward. The algorithm uses divide-and-conquer,
and the “divide” part is just a randomized version of the classical quadtree,
which partitions the instance using squares that progressively get smaller. Thus
the algorithm is reminiscent of Karp’s dissection heuristic [51]. However, the
algorithm differs from Karp’s dissection heuristic in two ways. First, it uses ran-
domness while constructing the partition. Second, unlike the dissection heuristic,
which treats the smaller squares as independent problem instances (to be solved
separately and then linked together in a trivial way) this algorithm allows limited
back-and-forth trips between the squares. Thus the subproblems inside adjacent
squares are interdependent, though only slightly: the algorithm allows the tour
to make O(1/ε) entries/exits to each square of the dissection. To show that even
such simple tours can cost less than 1 + ε times the cost of the optimum (i.e.,
unrestricted) tour, we will describe how to transform an optimum tour so that it
satisfies the “limited back-and-forth trips” property: this is our “Structure The-
orem” for the problem. We will also describe a simple dynamic programming to
find the best tour with this structure.

Although our algorithm is described as randomized, it can be derandomized
with some loss in efficiency —specifically, by trying all choices for the shifts used
in the randomized dissection. Better derandomizations appear in Czumaj and
Lingas [27] and Rao and Smith’s paper (see Section 3).

1.1. The perturbation

First we perform a simple perturbation of the instance that, without greatly
affecting the cost of the optimum tour, ensures that each node lies on the unit
grid (i.e., has integer coordinates) and every internode distance is at least 2.
Call the smallest axis-parallel square containing the nodes the bounding box.
Our perturbation will ensure its sidelength is at most n2/2.

We assume ε > 1/n1/3; a reasonable assumption since ε is a fixed constant
independent of the input size. Let w be the maximum distance between any two
nodes in the input. Then 2w ≤ OPT ≤ nd. We lay down a grid in which the grid
lines are separated by distance εw/n1.5. Then we move each node to its nearest
gridpoint. This may merge some nodes; we treat this merged node as a single
node in the algorithm. (At the end we will extend the tour to these nodes in
a trivial way by making excursions from the single representative.) Note that
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Fig. 1. The dissection

the perturbation moves each node by at most εw/n1.5, so it affects the optimum
tour cost by at most εw/n0.5, which is negligible compared to εOPT when n
is large. Finally, we rescale distances so that the minimum internode distance
is at least 2. Then the maximum internode distance is at most n1.5/ε, which is
asymptotically less than n2/2, as desired.

1.2. Randomized Dissection

A dissection of a square is a recursive partitioning into squares; see Figure 1. We
view this partitioning as a tree of squares whose root is the square we started
with. Each square in the tree is partitioned into four equal squares, which are
its children. The leaves are squares of sidelength 1.

Now we define a randomized dissection of the instance. Let P ∈ <2 be the
lower left endpoint of the bounding box and let each side have length l. We
enclose the bounding box inside a larger square —called the enclosing box—of
sidelength L = 2l and position the enclosing box such that P has distance a
from the left edge and b from the lower edge, where integers a, b ≤ l are chosen
randomly. We refer to a, b as the horizontal and vertical shift respectively; see
Figure 2. The randomized dissection is the dissection of this enclosing box. Note
that we are thinking of the input nodes and the unit grid as being fixed; the
randomness is used only to determine the placement of the enclosing box.

Assume without loss of generality that L is a power of 2 so the squares in
the dissection have integer endpoints and leaf squares have sides of length 1
(and hence at most one node in them). Thus the dissection has depth at most
dlog Le = O(log n).

Some observations. Now we make a few observations about the dissection that
will be useful in the proof of our Structure theorems; these observations are not
needed to understand the theorem statement or the algorithm. Let the level of
a square in the dissection be its depth from the root; the root square has level
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Horizontal shift  a

Vertical shift b

Enclosing 
Box

Bounding 
Box

(contains 
input nodes)

Fig. 2. The enclosing box contains the bounding box and is twice as large, but is shifted by
random amounts in the x and y directions.

0. We also assign a level from 0 to log L − 1 to each horizontal and vertical grid
line that participated in the dissection. The horizontal (resp., vertical) line that
divides the enclosing box into two has level 0. Similarly, the 2i horizontal and
2i vertical lines that divide the level i squares into level i + 1 squares each have
level i.

The following property of a random dissection will be crucial in the proof
(see for example the proof of Lemma 1). Consider any fixed vertical grid line
that intersects the bounding box of the instance. What is the chance that it
becomes a level i line in the randomized dissection? There are 2i values of the
horizontal shift a (see Figure 2 again) that cause this to happen, so

Pr
a

[this line is at level i] =
2i

l
=

2i+1

L
(1)

Thus the randomized dissection treats —in an expected sense— all such grid
lines symmetrically.

1.3. Portal-respecting tours

Each grid line will have special points on it called portals. A level i line has 2i+1m
equally spaced portals inside the enclosing box, where m is the portal parameter
(to be specified later). We require m to be a power of 2. In addition, we also
refer to the corners of each square as a portal. Since the level i line has 2i+1 level
i + 1 squares touching it, we conclude that each side of the square has at most
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m+2 portals (m usual portals, and the 2 corners), and a total of at most 4m+4
portals on its boundary. (Careful readers will be able to prove a better upper
bound than 4m + 4.) A portal-respecting tour is one that, whenever it crosses
a grid line, does so at a portal. Of course, such a tour will not be optimal in
general, since it may have to deviate from the straight-line path between nodes.

A portal-respecting tour is k-light if it crosses each side of each dissection
square at most k times. The optimum portal-respecting tour does not need to
visit any portal more than twice; this follows by the standard observation that
removing repeated visits can, thanks to triangle inequality, never increase the
cost. Thus the optimum portal-respecting tour is (m+2)-light. A simple dynamic
programming can find the optimum portal-respecting tour in time 2O(m)L log L.
We will show that m = O(log n/ε) suffices (see Section 2), hence the running
time is nO(1/ε).

A more careful analysis in Section 3 shows that actually we only need to
consider portal-respecting tours that are k-light where k = O(1/ε). Our dynamic
programming can find the best such tour in poly(

(

m
k

)

)2O(k)L log L time, which

is O(n(log n)O(1/ε)).

Dynamic programming. We sketch the simple dynamic programming referred
to above. To allow a cleaner proof of correctness, the randomized dissection was
described above as a regular 4-ary tree in which each leaf has the same depth.
In an actual implementation, however, one can truncate this tree so that the
partitioning stops as soon as a square has at most 1 input node in it. Then the
dissection has at most 2n leaves and hence O(n log n) squares. Furthermore, the
cost of the optimum k-light portal respecting tour with respect to this truncated
dissection cannot be higher than that the optimum cost of the full (untruncated)
dissection. The reason is that a truncated dissection has fewer portals, and so
the tour is less constrained.

The truncated dissection (which is just the quadtree of the enclosing box) can
be efficiently computed, for instance by sorting the nodes by x- and y-coordinates
(for better algorithms, especially in higher dimensions, see Bern et al. [18]). The
dynamic programming now is the obvious one. Suppose we are interested in
portal-respecting tours that enter/exit each dissection square at most 4k times.
The subproblem inside the square can be solved independently of the subproblem
outside the square so long as we know the portals used by the tour to enter/exit
the square, and the order in which the tour uses these portals. Note that given
this interface information, the subproblems inside and outside the square involve
finding not salesman tours but a set of up to 4k vertex-disjoint paths that visit all
the nodes and visit portals in a way consistent with the interface. (See Figure 3.)
We maintain a lookeup table that, for each square and for each choice of the
interface, stores the optimum way to solve the subproblem inside the square.
The lookup table is filled up in a bottom-up fashion in the obvious way. Clearly,
its size is (# of dissection squares) × mO(k)k!.

One can actually reduce the mO(k)k! term to 2O(m) = nO(1/ε) by noticing
that the dynamic programming need not consider all possible interfaces for a
square since the optimum portal respecting tour in the plane does not cross
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Portals

Portal-
respecting
tour

Fig. 3. This portal-respecting tour enters and leaves the square 10 times, and the portion
inside the square is a union of 5 disjoint paths.

itself. Interfaces corresponding to tours that do not cross themselves are related
to well-matched parenthesis pairs, and the number of possibilities for these are
given by the well-known Catalan numbers. We omit details since the better
analysis given in Section 3 reduces k to O(1/ε), which makes mk much smaller
than 2O(m).

2. Structure Theorem: First Cut

First we give a very simple analysis (essentially from [10]) showing that if the
portal parameter m is O(log n/ε), then the best portal-respecting tour is likely
to be near optimal. This tour may enter/leave each square up to 8m + 8 times.

Let OPT denote the cost of the optimum salesman tour and OPTa,b,m denote
the cost of the best portal-respecting tour when the portal parameter is m and
the random shifts are a, b. Our notation stresses the dependence of this number
upon shifts a and b and the portal parameter m. Clearly, OPTa,b,m ≥ OPT.

Theorem 1. Ea,b[OPTa,b,m − OPT] is at most 2 log L/mOPT, where L is the
sidelength of the enclosing box and the expectation Ea,b[·] is over the random
choice of shifts a, b.

Consequently, the probability is at least 1/2 (over the choice of shifts a, b)
that the difference OPTa,b,m − OPT is at most twice its expectation, namely
4 log L/m · OPT. When the root square has sides of length L ≤ n2 (as ensured by
our perturbation) and m is at least 8 log n/ε, this difference is at most 8 log n/m ·
OPT = ε · OPT. Thus OPTa,b,m ≤ (1 + ε)OPT with probability at least 1/2.

The following simple lemma lies at the heart of Theorem 1. It analyses the
expected length increase when a single edge it is made portal-respecting. Theo-
rem 1 immediately follows by linearity of expectations, since the tour length is
a sum of edge lengths.

For any two nodes u, v ∈ <2 let d(u, v) be the Euclidean distance between
u, v and let the portal-respecting distance between u and v, denoted da,b,m(u, v)
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Portal

Fig. 4. Every crossing is moved to the nearest portal by adding a “detour.”

be the shortest distance between them when all intermediate grid lines have to
be crossed at portals.

Lemma 1. When shifts a, b are random, the expectation of da,b,m(u, v) − d(u, v)

is at most 2 log L
m d(u, v), where L is the sidelength of the enclosing box.

Proof. The expectation, though difficult to calculate exactly, is easy to upper
bound. The straight line from u to v crosses the unit grid at most 2d(u, v) times.
To get a portal-respecting path, we move each crossing to the nearest portal on
that grid line (see Figure 4), which involves a detour whose length is at most the
interportal distance. (Note that we are just describing a tour, and thus prove
the upper bound; the best portal-respecting path may look quite different.) If
the line in question has level i, the interportal distance is L/m2i+1. By (1), the
probability that the line is at level i is 2i+1/L. Hence the expected length of the
detour is at most

log L−1
∑

i=0

2i+1

L
· L

m2i+1
=

log L

m
.

The same upper bound applies to each of the 2d(u, v) crossings, so linearity
of expectations implies that the expected increase in moving all crossings to
portals is at most 2d(u, v) log L/m. This proves the lemma.

3. Structure Theorem: Second Cut

Recall that a portal-respecting tour is k-light if it crosses each side of each
dissection square at most k times. Let OPTa,b,k,m denote the cost of the best
such salesman tour when the portal paramter is m.

Theorem 2. E[OPTa,b,k,m −OPT] ≤ ( 2 log L
m + 12

k−5 )OPT, where the expectation
is over the choice of shifts a, b.
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Fig. 5. The tour crossed this line segment 6 times, but breaking it and reconnecting on each
side (also called “patching”) reduced the number of crossings to 2.

Thus if m = Ω(log n/ε) and k > 24/ε+5, the probability is at least 1/2 that
the best k-light tour has cost at most (1 + ε)OPT.

The analysis in this proof has a global nature, by which we mean that it
takes all the edges of the tour into account simultaneously (see our charging
argument below). By contrast, many past analyses of approximation algorithms
for geometric problems — see for instance algorithms surveyed in [17] and also
our simpler analysis in Section 2— reason in an edge-by-edge fashion.

We will use the following well-known fact about Euclidean TSP that is im-
plicit in the analysis of Karp’s dissection heuristic (or even [14]), and is made
explicit in [5].

Lemma 2. (Patching Lemma) Let S be any line segment of length s and π be
a closed path that crosses S at least thrice. Then we can break the path in all
but two of these places, and add to it line segments lying on S of total length at
most 3s such that π changes into a closed path π′ that crosses S at most twice.

Proof. For simplicity we give a proof using segments of length 6s instead of 3s;
the proof of 3s uses the Christofides heuristic and the reader may wish to work
it out.

Suppose π crosses S a total of t times. Let M1, . . . , Mt be the points on
which π crosses S. Break π at those points, thus causing it to fall apart into t
paths P1, P2, . . . , Pt. In what follows, we will need two copies of each Mi, one
for each side of S. Let M ′

i and M ′′
i denote these copies.

Let 2j be the largest even number less than t. Let J be the multiset of line
segments consisting of the following: (i) A minimum cost salesman tour through
M1, . . . , Mt. (ii) A minimum cost perfect matching among M1, . . . , M2j . Note
that the line segments of J lie on S and their total length is at most 3s. We take
two copies J ′ and J ′′ of J and add them to π. We think of J ′ as lying to the left
of S and J ′′ as lying to the right of S.
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Now if t = 2j + 1 (i.e., t is odd) then we add an edge between M ′
2j+1 and

M ′′
2j+1. If t = 2j + 2 then we add an edge between M ′

2j+1 and M ′′
2j+1 and an

edge between M ′
2j+2 and M ′′

2j+2. (Note that these edges have length 0.)
Together with the paths P1, . . . , P2j , these added segments and edges define

a connected 4-regular graph on {M ′
1, . . . , M

′
t} ∪ {M ′′

1 , . . . , M ′′
t } . An Eulerian

traversal of this graph is a closed path that contains P1, . . . , Pt and crosses S at
most twice. (See Figure 5.) Hence we have proved the theorem.

Another needed fact —implicit also in Lemma 1—relates the cost of a tour
to the total number of times it crosses the lines in the unit grid. If l is one of
these lines and π is a salesman tour then let t(π, l) denote the number of times
π crosses l. Then

∑

l:vertical

t(π, l) +
∑

l:horizontal

t(π, l) ≤ 2 cost(π) (2)

Now we are ready to prove the main result of the section.

Proof. (Theorem 2) The main idea is to transform an optimum tour π into a
k-light tour. Whenever the tour enters/exits a square “too many” times, we use
the Patching Lemma to reduce the number of crossings. This increases cost,
which we upper bound in the expectation by using the relationship in (2).

Let us describe this tour transformation process for a single vertical grid line,
say l. (A similar transformation happens at every grid line.) Suppose l has level
i. It is touched by 2i+1 level i + 1 squares, which partition it into 2i+1 segments
of length L/2i+1. For each j > i, line l is also touched by 2j level j squares. In
general, we will refer to the portion of l that lies in a level j square as a level
j segment. The final goal is to reduce the number of crossings in each level i
segment to k or less; we do this as follows.

Let s = k − 4. An overloaded segment of l is one which the tour crosses at
least s+1 times. The tour transformation proceeds as follows. For every segment
at level log L − 1 that is overloaded, we apply the patching lemma and reduce
the number of crossings to 2. In the transformed tour, we now look at segments
of level log L − 2 and for each overloaded segment, apply the patching lemma
to reduce the number of crossings to 2. Continuing this way for progressively
higher levels, we stop when no segment at level i is overloaded. At the end, we
move all crossings to portals; we do this by adding vertical detours (i.e., vertical
segments), as in Figure 4.

To analyse the cost increase in this transformation, we consider an imaginary
procedure in which the tour transformation on this vertical grid line l proceeds
to level 0, i.e., until the entire line is not overloaded. Let Xl,j(b) be a random
variable denoting the number of overloaded level j segments encountered in this
imaginary procedure. Note that Xl,j(b) is determined by the vertical shift b
alone, which determines the location of the tour crossings with respect to the
segments on l. We claim that for every b,

∑

j≥0

Xl,j(b) ≤ t(π, l)

s − 1
. (3)
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The reason is that the optimum tour π crossed grid line l only t(π, l) times, and
each application of the Patching Lemma counted on the left hand side of (3)
replaces at least s + 1 crossings by at most 2, thus eliminating s − 1 crossings
each time.

Since a level j segment has length L/2j , the cost of the imaginary transfor-
mation procedure is, by the Patching Lemma, at most

∑

j≥1

Xl,j(b) · 3L

2j
. (4)

(Note that in (4) we omit the case j = 0 because the level 0 square is just the
bounding box, and the tour lies entirely inside it.)

The actual cost increase in the tour transformation at l depends on the level
of l, which is determined by the horizontal shift a. When the level is i, the cost
increase is upper bounded by the terms of (4) corresponding to j ≥ i + 1:

Increase in tour cost when l has level i ≤
∑

j≥i+1

Xl,j(b) · 3L

2j
, (5)

We “charge” this cost to l. Of course, whether or not this charge occurs depends
on whether or not i is the level of line l, which by (1) happens with probability at
most 2i+1/L (over the choice of the horizontal shift a). Let Yl,b be the following
random variable (it is a function of a):

Yl,b = charge to l when the shifts are a, b.

Thus for every vertical shift b

Ea[Yl,b] =
∑

i≥1

2i+1

L
· (charge to l when its level is i)

≤
∑

i≥1

2i+1

L
·

∑

j≥i+1

Xl,j(b) · 3L

2j

= 3 ·
∑

j≥1

Xl,j(b)

2j
·

∑

i≤j−1

2i

= 3 ·
∑

j≥1

Xl,j(b)

2j
· (2j − 1)

≤ 3 ·
∑

j≥1

·Xl,j(b)

≤ 3 t(π, l)

s − 1

We may now appear to be done, since linearity of expectations seems to
imply that the total expected cost charged to all lines is

Ea[
∑

l

Yl,a] =
∑

l

6t(π, l)

s − 1
, (6)
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which from (2) is at most

≤ 12
cost(π)

s − 1
. (7)

However, we are not done. We have to worry about the issue of how the mod-
ifications at various grid lines affect each other. Fixing overloaded segments on
vertical grid lines involves adding vertical segments to the tour, thus increasing
the number of times the tour crosses horizontal grid lines; see Figure 5. Then
we fix the overloaded segments on horizontal grid lines. This adds horizontal
segments to the tour, which may potentially lead to some vertical lines becom-
ing overloaded again. We need to argue that the process stops. To this end we
make a simple observation: fixing the overloaded segments of the vertical grid
line l adds at most 2 additional crossings on any horizontal line l′. The reason
is that if the increase were more than 2, we could just use the Patching Lemma
to reduce it to 2 and this would not increase cost since the Patching Lemma is
being invoked for segments lying on l which have zero horizontal separation (that
is, they lie on top of each other). Also, to make sure that we do not introduce
new crossings on l itself we apply the patching separately on vertical segments
of both sides of l. Arguing similarly about all intersecting pairs of grid lines, we
can ensure that at the end of all our modifications, the tour crosses each side of
each dissection square up to s + 4 times; up to s times through the side and up
to 4 times through the two corners. Since s + 4 = k, we have shown that the
tour is k-light.

The analysis of the cost incurred in moving all crossings to the nearest portal
is similar to the one in Section 2 and gives the 2 log L

m OPT term in the statement
of Theorem 2. This completes our proof.

4. The Rao-Smith Algorithm

Rao and Smith [71] describe an improvement of the above algorithm that runs in

time O(n log n + n2poly(1/ε)). First they point out why the running time of the
above algorithm is n(log n)O(1/ε). It is actually nmO(k) where m is the portal
parameter and k is the number of times the tour can cross each side of each
dissection square. The n comes from the number of squares in the dissection, and
mO(k) from the fact that the dynamic programming has to enumerate all possible
“interfaces,” which involves enumerating all ways of choosing k crossing points
from among the O(m) portals. The analysis given above seems to require m to be
Ω(log n) and k to be Ω(1/ε), which makes the running time Ω(n(log n)O(1/ε)).
Their main new idea is to reduce the mO(k) enumeration time by giving the
dynamic programming more hints about which portals are used by the tour to
enter/exit each dissection square.

The “hints” mentioned above are generated using a (1 + ε)-spanner of the
input nodes. This is a connected graph with O(n/poly(ε)) edges in which the
distance between any pair of nodes is within a factor (1 + ε) of the Euclidean
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distance. Such a spanner can be computed in O(n log n/poly(ε)) time (see Al-
thoefer et al. [3]). Note that distances in the spanner define a metric space in
which the optimum TSP cost is within a factor (1 + ε) of the optimum in the
Euclidean space.

Rao and Smith notice that the tour transformation procedure of Section 3
can be applied to any connected graph, and in particular, to the spanner. The
transformed graph is portal-respecting, as well as k-light for k = O(1/ε). The
expected distance between any pair of points in the transformed graph is at most
factor (1+ε) more than what it was in the spanner. Note that some choices of the
random shifts may stretch the distance by a much larger factor; the claim is only
about the expectation. (In particular, it is quite possible that the transformed
graph is not a spanner.) By linearity of expectation, the expected increase in the
cost of the optimum tour in the spanner is also at most a factor (1 + ε).

Now the algorithm tries to find the optimum salesman tour with respect to
distances in this transformed graph. Since the transformed graph is k-light, we
know for each dissection square a set of at most 4k portals that are used by the
tour to enter/exit the square. As usual, we can argue that no portal is crossed
more than twice. Thus the dynamic programming only needs to consider kO(k)

“interfaces” for each dissection square. For more details see Rao and Smith’s
paper.

4.1. Higher-dimensional versions

Although we concentrated on the version of the Euclidean TSP in <2, the algo-
rithms also generalize to higher-dimensional versions of all these problems. The
analysis is similar, with obvious changes such as replacing squares by higher
dimensional cubes. For more details see Arora [5].

Note that the running time —even after using the ideas of Rao and Smith—
has a doubly exponential dependence upon the dimension d. So the dimension
should be o(log log n) in order for the running time to be polynomial. As men-
tioned in the introduction, there are complexity theoretic reasons to believe that
this doubly exponential dependence is (roughly speaking) inherent.

5. Generalizing to other problems: a methodology

The design of the above PTASs for the TSP uses very few properties specific to
the TSP. Below, we abstract out these properties, and identify other problems
that share these properties. The first property of the TSP that we needed was
that the objective is a sum of edge lengths.

Next, we crucially needed the fact that the notion of portal-respecting so-
lutions —whereby edges have to cross the boundaries of quadtree squares only
at portals— makes sense. (As we will see later, when the problem requires solu-
tions with a fairly rigid topology, such as triangulations, then portal-respecting
solutions, since they may have bent edges, may not make sense.) We used this
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in Section 2 by showing that every set of edges in the plane can be made portal-
respecting without greatly affecting their total length. We abstract out this state-
ment in the following Theorem, which follows from Lemma 1 by linearity of
expectations.

Theorem 3. Let E be any set of edges in the plane in which each edge has length
at least 4 and all edges lie inside a square with a side of length L. When we
pick shifts a, b ∈ {0, 1, , . . . , L − 1} randomly then the edges can be made portal-
respecting to the shifted quadtree with expected cost increase 2 log L

m cost(E). Here
m is the portal parameter and L is the sidelength of the enclosing box.

The more sophicated analysis of Section 3 relied on another property of the
TSP, embodied in the Patching Lemma (Lemma 2). This property was needed in
the proof to transform the optimum tour (over many steps and without greatly
affecting the cost) into a k-light tour where k is O(1/ε). Thus our dynamic
programming can restrict attention to k-light tours, and thus be more efficient.
The Patching Lemma also holds for trees and Steiner trees. It may also hold
(possibly in a weaker form) for many other geometric problems involving routing
or connecting.

General methodology. The discussion above suggests the following general method-
ology for finding out if a geometric problem may have an approximation scheme.

1. Check if the objective function involves a sum of edge lengths.
2. Check if the notion of portal-respecting solutions makes sense. (That is, can

one turn a portal-respecting solution into a valid solution?)
3. Check if one can describe a small “interface” between adjacent squares that

allows the subproblems inside them to be solved independently. If so, one
can probably use dynamic programming to get an approximation scheme
that runs in nO(log n/ε) time or better.

4. If the above properties hold, check if the Patching Lemma (or something akin
to it) holds. If so, the proof of Section 3 can probably be made to work for
the problem and also the proof of Section 4

Now we illustrate how to apply this methodology using three geometric prob-
lems. Our examples were carefully chosen. Minimum Steiner Tree (Section 5.1)
satisfies all the properties mentioned above so the TSP algorithm generalizes to
it in a straightforward way. In the k-median problem (Section 5.2) the objective
function is a sum of edge lengths but the Patching Lemma does not hold for
this problem. However, the notion of portal-respecting solution makes sense for
it, and we obtain a PTAS. Finally, the Minimum Latency problem (Section 5.3)
is interesting because it neither obeys the Patching Lemma, nor is its objective
function a sum of edge lengths. Nevertheless, by a deeper analysis of the objec-
tive function, we can write it as a weighted sum of salesmen paths, and then
restrict attention to portal-respecting solutions.

Of course, the above methodology is by no means a “complete” description of
how to design PTAS’s for geometric problems. For instance, a recent approxima-
tion scheme for Minimum cost degree-restricted spanning tree, briefly described
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in Section 6, uses some of these ideas and additional ideas. In Section 6.4 we
describe two interesting open problems whose solution may also advance this
methodology.

5.1. Minimum Steiner Tree

In the Minimum Steiner Tree problem, we are given n nodes in <d and desire the
minimum-cost tree connecting them3. In general, the minimum spanning tree is
not an optimal solution and one needs to introduce new points (called “Steiner”
points) as nodes in the solution. In case of three nodes at the corners of an
equilateral triangle in <2 (with distances measured in `2 norm), the optimum
Steiner tree contains the centroid of the triangle, and has cost

√
3/2 factor lower

than the MST. Furthermore, the famous Gilbert-Pollak [38] conjecture said that
for every set of input nodes, a Steiner tree has cost at least

√
3/2 times the

cost of the MST. Du and Hwang [30] proved this conjecture and thus showed
that the MST is a 2/

√
3-approximation to the optimum Steiner tree. A spate

of research activity in recent years starting with the work of Zelikovsky[85] has
provided better approximation algorithms, with an approximation ratio around
1.143 [86]. The metric case does not have an approximation scheme if P 6= NP [20]
and Trevisan [79] has shown the same result for the Euclidean version in O(log n)
dimensions.

Steiner Tree problem involves an objective function that is a sum of edge
lengths and it obeys the Patching Lemma (as is easily checked). Now we briefly
describe the algorithm.

First we perturb the instance to ensure that all coordinates are integers and
the ratio of the maximum internode distance to the smallest internode distance is
O(n2). We proceed exactly as for the TSP. If d denotes the maximum internode
distance, lay a grid of granularity εd/n1.5 and move every node to its nearest
grid point. We also restrict Steiner nodes to lie on grid points. As is well-known,
the optimum Steiner tree has at most n − 1 Steiner nodes (and hence a total of
at most 2n − 1 edges), so the cost of the optimum solution changes by at most
(2n − 1)εd/n1.5, which is less than ε · OPT/2 as n grows.

We define a randomized dissection as well as portals in the same way as we
did for the TSP. A k-light portal-respecting Steiner tree is one that crosses grid
lines only at portals and which enters and leaves each side of each square in
the dissection at most k times. (Note that portals have a natural meaning for
the Steiner tree problem: they are Steiner nodes!) We can find the best such
tree by dynamic programming similar to the one for the TSP. There are only
two modifications. First, the base case of the dynamic programming, involving
the smallest squares in the dissection, has to consider the possibility of using
Steiner nodes in the optimum solution. For this it needs to run an exponential-
time algorithm for the Steiner forest problem. Luckily, the Steiner forest problem
inside this square has constant size, specifically, at most 4k+1 (at most 4k portals

3 It appears that this problem was first posed by Gauss in a letter to Schumacher [42].
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and at most 1 input node). The other modification to the dynamic program is in
the way of specifying the “interface” between adjacent squares of the dissection,
since the final object being computed is a tree and not a tour. The details are
straightforward and left to the reader.

The proof of correctness is essentially unchanged from the TSP case since
the Patching Lemma holds for the Steiner Tree problem.

5.2. k-median

In the k-median problem we are given n nodes {x1, x2, . . . , xn} and a positive
integer k, and we have to find a set of k medians {m1, m2, . . . , mk} that mini-
mizes

n
∑

i=1

min
1≤j≤k

{d(xi, mj)} (8)

where d(·, ·) denotes distance. By grouping together terms in (8) corresponding
to xi’s which have the same nearest median (breaking ties arbitrarily) we see
that the problem involves putting k “stars” (i.e., graphs in which nodes are
attached to a single center) in <2 which cover all n input nodes; the medians
are at the centers of these stars. Thus we may think of the k-median problem
as covering by k stars. There are two variations of the problem depending upon
whether or not the medians are required to be input nodes. The PTAS we are
going to describe works for both variations. (After the discovery of this PTAS,
a constant factor approximation was discovered for the metric version in [24].)

The Patching Lemma does not hold for the k-median problem: given the
optimum solution —a union of k stars— and a straight line segment in the
plane, there is no general way to reduce the number of star edges crossing the
straight line without raising the cost by a lot.

However, the notion of a portal-respecting solution (see Figure 6)— one in
which the edges of the stars, whenever they cross the edges of the quadtree, do
so at a portal— makes sense, as we see below. Using Theorem 3 We can show
that there is a portal-respecting solution of cost at most (1 + ε)OPT .

First, we do a simple perturbation that allows us to assume that the bounding
box has length O(n4) (see [10]) and all nodes and medians have integer coordi-
nates. Then by making the portal parameter m = Ω(log n/ε), the expected cost
of the optimum portal-respecting cover by k stars is at most (1 + ε)OPT. Now
we describe the dynamic programming to find the optimum portal-respecting
cover by k stars. As usual, for each square, we have to decide upon an “inter-
face” between the solutions inside and outside the square, so that the DP can
solve the subproblem inside the square independently of the one outside. Since
all star edges have to enter or leave the square via a portal, the algorithm can
solve the subproblem inside the square so long as it has been told (a) the number
of medians that lie inside the square, and (b) the distance from each portal to
the nearest median outside the square. This is enough information to solve the
subproblem inside the square optimally.
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Median

Portals

Input nodes

Fig. 6. A portal-respecting solution for k-median.

Specifying (a) requires dlog ke bits and specifying (b) requires O(log2 n/ε)

bits because each median has integer coordinates. So there are 2O(log2 n/ε) pos-
sible interfaces. Since the number of squares in the dissection is O(n log n), the
running time is essentially the same as the number of possible interfaces. Thus
we get an approximation scheme that runs in nO(log n/ε) time, which is slightly
superpolynomial. By a more careful choice for the interface and other tricks, the
running time can be made polynomial [10] and even near linear [55].

5.3. Minimum Latency

The minimum latency problem, also known as traveling repairman problem [1],
is a variant of the TSP in which the starting node of the tour is given and
the goal is to minimize the sum of the arrival times at the other nodes. (The
arrival time is the distance covered before reaching that node.) Like the TSP,
the problem is NP-hard in the plane. But it has a reputation for being much
more difficult than the TSP: the class of tractable instances consists only of
path graphs [1] and recently Sitters [76] showed that it is NP-hard on weighted
trees. By contrast, the TSP can be optimally solved on a tree. The metric case
of the latency problem is MAX-SNP-hard (this follows from the reduction that
proves the MAX-SNP-hardness of TSP(1, 2) [69]), and therefore the results of
Arora et al. [9] imply that unless P = NP, a PTAS does not exist for metric
instances. Blum, Chalasani, Coppersmith, Pulleyblank, Raghavan and Sudan
gave a 144-approximation algorithm for the metric case and a 8-approximation
for weighted trees. Goemans and Kleinberg [40] then gave a 21.55-approximation
in the metric case and a 3.59-approximation in the geometric case (the latter uses
the PTAS for k-TSP). Arora and Karakostas [8] designed a quasipolynomial-time
approximation scheme for the problem. We do not know whether the running
time can be reduced to polynomial.
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Consider the objective function for the problem: we have to find a permuta-
tion π of the n nodes such that π(1) = 1 and we minimize

n
∑

i=2

i−1
∑

j=1

d(π(j), π(j + 1)).

Note the non local nature of the objective function: an extra edge inserted at
the beginning of the tour affects the latency of all the remaining nodes. For
this reason, the shortest salesman tour may be very suboptimal in terms of its
latency, as the reader may wish to verify. This strange objective function also
poses problems in applying our general methodology, since it is not a simple sum
of edge lengths! However, we show below that the objective may be approximated
as a weighted sum of O(log n/ε) salesman paths, and then we can use all our
usual techniques by applying linearity of expectations.

Now we describe this argument of Arora and Karakostas [8]. Let ε > 0 be
any parameter such that we desire a (1 + ε)-approximation. First, do a simple
perturbation: merge pairs of nodes separated by distance at most O(εL/n2),
where L is the largest internode distance. This allows us to assume that the
minimum nonzero internode distance is 4 and maximum internode distance is
O(n2/ε). Since ε is constant, we will often think of the maximum internode
distance as O(n2).

We will show that to find a (1 + ε)-approximate minimum latency tour, it
suffices to find the tour as a union of O(log n/ε) disjoint paths, where the ith
path contains ni nodes, and the numbers n1, n2, . . . decrease geometrically (see
below). Within each path, the order of visits to the nodes does not matter, as
long as the total length is close to minimum.

Let T be an optimal tour with total latency OPT. Imagine breaking this
tour into r segments, so that in segment i we visit ni nodes, where

ni =
⌈

(1 + ε)r−1−i
⌉

for i = 1 . . . r − 1

nr = d1/εe .

Let the length of the ith segment be Ti. If we let n>i denote the total number
of nodes visited in segments numbered i + 1 and later, then a simple calculation
shows that (and this was the reason for our choice of ni’s)

n>i =
∑

j>i

nj ≤ ni

ε
, for every i = 1 . . . k − 1 (9)

The latency of any node in the p’th segment is at least
∑p−1

j=1 Tj and at

most
∑p

j=1 Tj . Adding over all segments, we can sandwich OPT between two
quantities:

r−1
∑

i=1

n>i · Ti ≤ OPT ≤
r−1
∑

i=1

n>i · Ti +

r
∑

i

niTi. (10)
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Now imagine doing the following in each segment except the last one: replace
that segment by the shortest path that visits the same subset of nodes, while
maintaining the starting and ending points (in other words, a traveling salesman
path for the subset). We claim that the new latency is at most (1+ε)OPT. Focus
on the ith segment. The length of the segment cannot increase, and so neither
can its contribution to the latency of nodes in later segments. The latency of
nodes within the ith segment can only rise by niTi. Thus the increase in total
latency is at most

r−1
∑

i=1

ni · Ti. (11)

Condition (9) implies that

r−1
∑

i=1

ni · Ti ≤ ε

r−1
∑

i=1

n>i · Ti,

which is at most εOPT by condition (10). Hence the new latency is at most
(1 + ε)OPT, as claimed. (Aside: Note that we have thus shown that the lower
bound and upper bound in Condition (10) are within a (1 + ε) factor of each
other, once we ignore the contribution of the last segment.)

Of course, if we use a (1 + γ)-approximate salesman path in each segment
instead of the optimum salesman path in each segment, then the latency of the
final tour is at most (1 + γ · ε + γ)OPT.

5.3.1. The Algorithm Combining the above ideas with those of Section 3, we
obtain the following theorem.

Theorem 4. (Structure theorem) There exist constants c, f such that the
following is true for every integer n > 0 and every ε > 0. For every well-rounded
Euclidean instance with n nodes, a randomly-shifted dissection has with proba-
bility at least 1/2 an associated tour that is c log n/ε2-light, and whose latency
is at most (1 + ε)OPT, where OPT denotes the latency of the minimum latency
tour. The tour crosses each portal at most f log n/ε times.

Proof. Let T be the tour with minimum latency. As described above, we break
it into r = O(log n/ε) segments, where the ith segment has ni nodes. We replace
each segment except the last one by the optimum salesman path for that segment.
This raises total latency by at most ε·OPT/4, say. Now we lay down the randomly
shifted dissection. Apply the technique of Section 3 in each segment, namely,
to modify the segment so that it becomes portal-respecting and k-light where
k = O(1/ε). (The last segment only has d1/εe nodes, so it is already k-light.)

A crucial observation is that the analysis of the tour modification in Section 3
relies on an expectation calculation, and so we can use linearity of expectations
to analyse the cost of our O(log n/ε) tour modifications.

The expected increase in the length of each segment is a multiplicative factor
(1+ε/4). Also, each salesman path never needs to cross a portal more than twice.
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We thus end up with a collection of paths which together are O(k · log n/ε)-light
(that is, O(log n/ε2)- light) and do not cross any portal more than O(log n/ε)
times altogether.

As for the effect on the latency, note from (10) that the latency is sandwiched
between two weighted sum of path lengths. Thus linearity of expectations implies
that the expected increase in each weighted sum is at most a multiplicative factor
(1+ ε/4). We conclude that with probability at least 1/2, the increase in latency
is a factor at most (1+ ε/2). Thus the overall latency of the final tour is at most
(1 + ε)OPT.

A simple dynamic programming running in nO(log n/ε2) can compute the best
tour satisfying the conclusion of Theorem 4; details are left to the reader. Note
that the final segment with nr = d 1

ε e nodes can be guessed by exhaustive enu-

meration by trying all n1/ε+1 choices and then running the rest of the algorithm
for each.

6. Survey of known results

All problems listed below are known to be NP-hard unless stated otherwise. A
discussion of the problems appears in Bern and Eppstein [17].

6.1. Problems that have approximation schemes

Minimum Steiner Tree: Discussed above.
k-median: Discussed above.
Minimum Latency Tour: Discussed above.
Facility Location: We are given n nodes {x1, x2, . . . , xn} who represent clients

and m other nodes that represent potential facilities; each of the facility node
has an associated cost cj for opening a facility at that node. Each client gets
“service” from the facility closest to it. The goal is to open a set of facilities
S so as to minimize

∑

j∈S

cj +

n
∑

i=1

min
j∈S

{d(xi, cj)} . (12)

A variant of the problem involves specifying a capacity for each facility and a
demand from each client. In the solution, the total demand from the clients
assigned to a facility must not exceed the capacity at that facility. Many other
variants exist. Aardal, Shmoys and Tardos [?] give the first constant factor
approximation; it works in any metric space; this has since been been im-
proved in many papers. The metric space version is MAX-SNP-hard. Arora,
Raghavan and Rao [10] give a PTAS for the geometric case. They extend the
algorithm to the capacitated case but the final solution may violate capacity
constraints by small amounts.
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Generalized Steiner Problem: Generalization of the minimum Steiner tree
problem in which p subsets S1, S2, . . . , Sp of the input nodes are specified and
we have to find a Steiner forest such that nodes within each Si are connected.
(In the usual Steiner problem, p = 1.) Our techniques give an approximation
scheme whose running time is exponential in p (unpublished), and which is a
PTAS when p is sublogarithmic. We do not know of a better algorithm, nor
of any complexity results.

k-TSP: Given n nodes and an integer k, find the shortest tour that visits at
least k nodes. The TSP algorithm easily generalizes to k-TSP, although the
running time is higher by a factor k [5].

k-MST: Given n nodes and an integer k, find the shortest tree that visits at
least k nodes. This problem was proved NP-hard not too long ago [34]. The
approximation ratio for this problem has been improved within a few years
from

√
k to constant [21] to 1 + ε [5].

Euclidean min-cost k-connected subgraph: Given n nodes and an integer
k, find the smallest subgraph that is k-connected. The subcase k = 1 is just
the MST problem. Czumaj and Lingas [27,28] give a PTAS using techiques
similar to those in our survey.

Prize collecting problems: In prize collecting TSP, the input consists of a
set of nodes and nonegative penalties on the nodes {πi}. The goal is to find a
tour on a subset of vertices that minimizes the sum of the cost of the edges in
the tour and the penalties on the vertices not in the tour. One can design a
quasipolynomial time approximation scheme using the methods in Section 2.
The same is true for the prize-collecting Steiner tree problem.

Min-cost perfect matching: Given 2n nodes in the plane, we have to find the
lowest cost set of edges that are vertex disjoint. This problem can be solved
optimally in polynomial time. The techniques of Section 3 lead to a near-
linear time approximation scheme [5]; this improves an older O(n1.5poly(log n))
time approximation scheme of Vaidya [81]. Recently Varadarajan [82] has
found an O(n1.5) time exact algorithm. His techniques are reminiscent of the
techniques covered here, but more sophisticated.

Euclidean Max-Cut: Given n nodes, find a partition into two subsets S1, S2

that maximises the sum of the lengths of the edges that have an endpoint in
each of S1 and S2. Fernandez de la Vega and Kenyon [29] give a PTAS for
this problem. The techniques are unrelated to those covered in our survey
and also extend to any metric space.

Min sum 2-clustering: Given n nodes, find a partition into two subsets
S1, S2 that minimises the sum of the lengths of the edges that either has
both endpoints in S1 or both endpoints in S2. (This objective function is the
complement of the Max-Cut.) Indyk [47] describes a PTAS when the nodes
are in a general metric space.

Maximum traveling salesman: The maximization version of the usual TSP
—find the longest salesman tour visiting all n nodes— has been described in
a lighter vein as the frequent flier mileage maximisation problem. (Though it
does appear to have other uses.) Barvinok et al. [13] show that this problem



Approximation scheme for geometric problems 23

has a PTAS. The idea is to approximate the unit ball by a polyhedron and
then apply matching techniques and some partial enumeration.

Degree-restricted spanning tree: Given n nodes and a degree d, find the
shortest spanning tree that has degree at most d; see Raghavachari [70] and
Bern and Eppstein [17] for a discussion. The salesman path problem is a
subcase when d = 2. Every minimum spanning tree has degree at most 5, so
the problem is trivial in the plane for d ≥ 5 (in higher dimensions this trivial
degree bound grows exponentially with the dimension). The case d = 4 is
NP-hard and the status when d = 3 is open. Khuller et al. [54] give 1.5-
and 1.25-approximations for the two problems, which Chan has improved
to 1.402 and 1.143 respectively [23]. Arora’s early manuscript claimed an
approximation scheme for this problem as well but this claim was withdrawn
in the published version. The status of this problem was then open for several
years, and recently Arora and Chang [6] gave an approximation scheme that

runs in nO(log5 n) time. The idea is once again to prove the existence of an
(m, k)-light solution that has cost (1+ε)OPT, where m, k are small. The need
for new ideas arises from the fact that the Patching Lemma does not hold. A
portal-respecting solution makes sense, but there is no obvious way to restrict
the number of crossings at a portal (in the case of TSP, we can restrict the
number to 2). So the design methodology of Section 5 does not apply. Arora
and Chang develop something akin to a Patching Lemma (and some other
ideas) to reduce the number of crossings at each portal to poly(log n). We
note that their approximation scheme also generalizes to dimensions 3 and
higher, for which no constant-factor algorithms were known.

6.2. Problems with no known approximation schemes

We suspect that many of the problems listed below may be MAX-SNP-hard.

Vehicle Routing: This is really a large body of problems in operations re-
search with several books devoted to them (see [78] for example). The basic
scenario involves a fleet of vehicles that have to make deliveries to customers.
The vehicles have limited capacities, so they can only carry a limited number
of parcels each. The vehicles may need to start from and end at a depot and
the number of depots and their locations may be part of the input. The vehi-
cles may be allowed to pick up packages in addition to dropping off packages.
Clearly, many other variants can be defined. Constant factor approximations
are known for many variants. PTAS’s are considered in Asano et al. [11], who
start with the most basic scenario: each package weighs the same, and each
vehicle can carry at most k of them. Each customer receives a single package.
The vehicles start from and finish at a central depot. Thus the problem can
be rephrased as minimum length covering by k-tours (i.e., tours containing at
most k nodes). This is somewhat reminiscent of capacitated k-median, which
involves as a subcase covering by k stars each of capacity n/k. However, the
difference in topology between the star and the tour seems to make the prob-
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lem much harder. Asano et al. present a PTAS for the case k = Ω(n/ log n)
(this uses techniques presented in this survey) and k = O(log n).

Minimum Weight Triangulation: Given a set of n nodes in the plane, the
goal is to compute a triangulation that minimizes the Euclidean edge length.
We do not know if this problem is NP-hard; it is one of the few problems
on a famous list of 12 problems in Garey and Johnson [36] whose status is
still open. Many candidate algorithms (such as Delaunay triangulation) give
terrible approximations. Levcopoulos and Krznaric [59] describe a constant
factor approximation.

Minimum Weight Steiner Triangulation. This is a variant of the previous
problem in which the triangulation may include any additional (“Steiner”)
points in the plane. We do not know if this problem is NP-hard. Eppstein
has described a constant factor approximation algorithm for the problem,
though this constant is fairly big (316, although this may be improvable).

Polygon Separation: Given a collection of k polygons, separate them by a
minimum-complexity planar straight-line graph. Edelsbrunner et al. [31] give
a constant factor approximation for the case of convex polygons, and Mitchell
and Suri [66] extend this to arbitrary polygons.

Polyhedral Separation Given closed polytopes P, R in <3 with P ⊆ R we
seek a polytope Q with the minimum number of faces such that P ⊆ Q ⊆ R.
Brönniman and Goodrich [22] give a constant-factor approximation. A re-
lated problem is polyhedron approximation: given a polytope R and a distance
ε, find a minimum complexity polygon Q ⊆ R whose boundary is within dis-
tance ε of the boundary of R. We do not know if this problem is NP-hard
nor do we have a constant factor approximation.

Covering orthogonal polygons by rectangles. An orthogonal polygon is on
whose all sides are horizontal or vertical. The polygon is simple if its bound-
ary has a single connected component. A rectangle covering of a polygon
is the minimum number of (possibly overlapping) rectangles whose union is
the polygon. Franzblau [35] gives a 2-approximation for the case where the
polygon is simple and orthogonal. (NP-hardness for this subcase was shown
in [26].) If the polygon is simple but otherwise arbitrary, an O(α(n)) approx-
imation is known [44]. If the polygon is not simple (i.e. has holes) then the
problem is known to be MAX-SNP-hard, so we discuss it in Section 6.3.

Graph Embedding: Given an n vertex graph G and a set of n nodes S in the
plane, we wish to find a bijection from the vertices of G to S that minimizes
the total embedded edge length. This problem generalizes the TSP (in which
G is a cycle). Bern et al. [19] give a O(log n)-approximation when G is a tree.
Similar approximations also exist for some other special cases.

6.3. Problems for which approximation schemes do not exist

k-center: Given n nodes {x1, . . . , xn} and an integer k, place k centers c1, c2, . . . , ck

in the plane so as to minimize max1≤i≤n min1≤j≤k {d(xi, cj)}. This is also
called minmax radius clustering. Many heuristics give a factor 2-approximation;
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the first is due to Gonzalez [41]. Feder and Greene [32] show that 1.82-
approximation is NP-hard.

Covering nonsimple polygons with rectangles: This is a variant of a
problem defined above; here the polygon may be nonsimple (i.e., have holes).
Berman and Dasgupta [16] show this problem is MAX-SNP-hard even if the
nonsimple polygon is orthogonal. An O(

√
n)-approximation is known [57] for

the orthogonal case, but no nontrivial approximation for the general case.
Polygon Bisection: Given a simple polygon, partition it into two equal-area

subsets using curved “fences” of minimum total length. No constant approx-
imation ratio is achievable if P 6= NP [56].

TSP with neighborhoods: Given a collection of k simple polygons (not
necessarily disjoint) with n nodes, we seek the shortest tour that passes
through each polygon. The usual TSP is a special case in which each polygon
is a point. Mata and Mitchell [62] describe a O(log n)-approximation and the
Berg et al. [15] have proved MAX-SNP-hardness.

6.4. Geometric problems that resist our techniques

Obviously, this section is somewhat redundant because it should include every
problem in Section 6.2. However, we discuss in some detail why our techniques
have not made any headway yet. The problems just happen to be two that the
author has thought about.

Covering with k-tours: We mentioned this simple version of vehicle routing
before. In order to solve it by geometric divide and conquer, we seem to need a
result stating that there is a near-optimum solution which enters or leaves each
area a small number of times. This does not appear to be true. (More concretely,
the Patching Lemma does not hold for this problem.)

We encountered a similar difficulty for the k-median problem (Section 5.2)
but there we are able to restrict attention to portal-respecting solutions. Even
though such a solution may enter dissection squares too many times, the “in-
terface” between adjacent squares (i.e., amount of information that we have
to decide upon so as to allow the algorithm to proceed independently in each
square) is small. The interface can be specified by a logarithmic number of bits
and so the dynamic programming can try all possible interfaces.

In the covering with k-tours problem, the difficulty lies in deciding upon
a small interface between adjacent squares, since a large number of tours may
cross the edge between them. It seems that the interface has to specify something
about each of them, which uses up too many bits.

Minimum Weight Steiner Triangulation. At first blush this problem seems
somewhat amenable to our techniques. One could try to define a portal-respecting
solution (portals have a natural interpretation as Steiner points) and show that
the best such solution has cost at most (1 + ε)OPT. Indeed, such a result was
claimed in an early draft of [10] and then withdrawn.
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The trouble with the approach arises from the topology of a triangulation. To
convert an optimum solution into a portal-respecting solution, we deflect edges
to make them pass through portals and use some kind of charging argument to
show that the cost increase is small. There seems to be no obvious way to do
this while keep the resulting structure a triangulation.

In fact, here is an open problem that tries to capture the difficulties we are
referring to. Let S(n) be the maximum number of Steiner points needed for the
optimum triangulation on n nodes. (The maximum is over all —uncountably
many—configurations of the n input nodes.) Is S(n) finite? Bounded by a poly-
nomial in n? Now let Sε(n) be the analogous quantity for (1 + ε)-approximate
triangulations. Is Sε(n) finite? Polynomial in n for every fixed ε? Note that if
the problem has a PTAS, then the answer to the last question has to be “Yes.”
Maybe showing a polynomial bound on Sε(n) would be a first step towards the
design of a PTAS. Note that a corollary of Eppstein’s 316-approximation is a
poly(n) (actually, O(n log n)) upper bound on S315(n).
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