
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Scalable kernel performance for Internet servers under realistic loads

Gaurav Banga
Rice University

Jeffrey C. Mogul
Digital Equipment Corp., Western Research Lab

Scalable kernel performance for Internet servers under realistic loads

Gaurav Banga gaurav@cs.rice.edu
Department of Computer Science, Rice University, Houston, TX, 77005

Jeffrey C. Mogul mogul@pa.dec.com
Digital Equipment Corp. Western Research Lab., 250 University Ave., Palo Alto, CA, 94301

Abstract
UNIX Internet servers with an event-driven architec-

ture often perform poorly under real workloads, even if
they perform well under laboratory benchmarking con-
ditions. We investigated the poor performance of event-
driven servers. We found that the delays typical in wide-
area networks cause busy servers to manage a large num-
ber of simultaneous connections. We also observed that
theselectsystem call implementation in most UNIX ker-
nels scales poorly with the number of connections being
managed by a process. The UNIX algorithm for allocat-
ing file descriptors also scales poorly. These algorithmic
problems lead directly to the poor performance of event-
driven servers.

We implemented scalable versions of the select sys-
tem call and the descriptor allocation algorithm. This led
to an improvement of up to 58% in Web proxy and Web
server throughput, and dramatically improved the scala-
bility of the system.

1 Introduction
Many Web servers and proxies are implemented as as

single-threaded event-driven processes. This approach is
motivated by the belief that an event-driven architecture
has some advantages over a thread-per-connection archi-
tecture [17], and that it is more efficient than process-per-
connection designs, including “pre-forked” process-per-
connection systems. In particular, event-driven servers
have lower context-switching and synchronization over-
head, especially in the context of single-processor ma-
chines.

Unfortunately, event-driven servers have been ob-
served to perform poorly under real conditions. In a re-
cent study of Digital’s Palo Alto Web proxies, Maltzahn
et. al. [11] found that the Squid (formerly Harvest) proxy
server[5, 22] performs no better than the older CERN
proxy[10]. This is surprising, because the CERN proxy
forks a new process to handle each new connection, and
process creation is a moderately expensive operation.
This result is also in sharp contrast with the study by

Chankhunthod et al.[5], which concluded that Harvest is
an order of magnitude faster than the CERN proxy.

Maltzahn et. al. [11] attribute Squid’s poor perfor-
mance to the amount of CPU time Squid uses to im-
plement its own memory management and non-blocking
network I/O abstractions. We investigated this phenomenon
in more detail, and found out that the large delays typi-
cal of wide-area networks (WANs) cause Squid to have
a large number of simultaneously open connections. Un-
fortunately, the traditional UNIX implementations of sev-
eral kernel features used by event-driven single-process
servers do not scale well with the number of active de-
scriptors in a process. These are theselectsystem call,
used to support non-blocking I/O, and the kernel rou-
tine that allocates a new file descriptor. (We refer to the
descriptor-allocation routine asufalloc(), as it is named
in Digital UNIX, although other UNIX variants use dif-
ferent names, e.g.,fdalloc().) A system running the Squid
server spends a large fraction of its time in these kernel
routines, which is directly responsible for Squid’s poor
performance under real workloads.

We designed and implemented scalable versions of
select() andufalloc() in Digital UNIX, and evaluated the
performance of Squid and an event-driven Web server in
a simulated WAN environment. We observed throughput
improvements of up to 43% for the Web server, and up
to 58% for Squid. We observed dramatic reductions in
CPU utilizations at lower loads. We also evaluated these
changes on a busy HTTP proxy server, which handles
several million requests per day.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the working of a typical
event-driven server running on a UNIX system. We also
describe the dynamics of typical implementations ofse-
lect() andufalloc(). Section 3 describes our quantitative
characterization of the performance problems inselect()
andufalloc(). In Section 4 we present scalable versions
of select() andufalloc(). In Sections 5 and 6 we evalu-
ate our implementation. Finally, Section 7 covers related
work and and offers some conclusions.

2 Background
In this section we present a brief overview of the work-

ing of a typical event-driven server. We will also describe
classical implementations ofselect() andufalloc(). This
will provide necessary background for the discussion in
the following sections.

2.1 Event-driven servers
An event-driven server typically has a single thread

which manages all connections to the server. The thread
uses theselect() system call to simultaneously wait for
events on these connections.

When a call toselect() returns, the server’s main loop
invokes event handlers for each of the ready descriptors.
These handlers perform a variety of tasks depending on
the nature of the particular event. For example, when a
socket being used to listen for new connections becomes
ready, the corresponding handler callsaccept() to re-
turn a file descriptor for the new connection. Handlers
invoked when a connection becomes ready for reading
or writing perform the actual read or write to the appro-
priate descriptor. The execution of handlers may cause
the addition or removal of descriptors from the set being
managed by the server.

Event-driven servers are fast because they have no
locking or context switching overhead. The same thread
manages all connections, and all handlers are executed
synchronously. A single-threaded server, however, can-
not exploit any true concurrency in the stream of tasks.
Thus, on multiprocessor systems, event-driven servers
have as many threads as processors. Examples of event-
driven servers include Squid[5, 22] and its commercial
version NetCache[16], Zeus[25], thttpd[24] and several
research servers[2, 8, 18].

2.2 select()
Theselectsystem call allows a user process to wait for

events on a set of descriptors. A process can indicate in-
terest in three types of events on a descriptor: events that
make a descriptorreadable, those that make itwritable,
andexceptionevents. This information is passed to the
kernel using three bitmaps. In each bitmap thekth bit in-
dicates interest in events of that type for thekth descrip-
tor. These bitmaps are value-result parameters, and the
returned bitmaps indicate the sets of ready descriptors.
Stevens[23] describes theselect() interface in detail.

We describe the Digital UNIX implementation ofse-
lect(). However, the classical BSD implementation of
select() is similar to the Digital UNIX implementation.
The main differences are related to the multithreaded na-
ture of the Digital UNIX kernel. Thus our discussion is
fully applicable to 4.3BSD and most BSD-derived im-
plementations. Also, we discuss howselect() works for
descriptors that represent sockets, but our discussion and

algorithms can be trivially extended to include descrip-
tors that refer to other kinds of objects, such as vnodes.
(Vnodes are kernel data structures used to represent files
and devices.)

In Digital UNIX, the select() function in the ker-
nel starts by creating internal data structures containing
summary information about sockets that are marked in
at least one input bitmap. Subsequently,select() calls
do scan(), which callsselscan() to check the status of
each of the entities (vnodes or sockets) corresponding to
the selected descriptors.

For each selected socket,selscan() enqueues a record
referring to the current thread on theselect queueof the
socket. This is done so that the thread can be identi-
fied as waiting insideselect() for events on the socket.
selscan() then callssoo select() for each socket, which
checks to see if the condition that the process is interested
in (i.e. the socket is readable, writable, or has pending
exceptions) is true. If none of the conditions that the user
process is selecting on are true, thendo scan() goes to
sleep waiting for any of these to become true.

Note that the linear search inselscan() covers every
socket of potential interest to the selecting process, inde-
pendent of how many are actually ready. Thus, the cost
is proportional to the number of file descriptors involved
in the call toselect(), rather than to the number of events
discovered by the call.

When a network packet comes in, protocol processing
may cause a condition on whichdo scan() is blocked
to become true. The thread that performs protocol pro-
cessing for an incoming packet callsselect wakeup(),
which wakes up all threads that are blocked indo scan()
awaiting this condition.

A thread that is woken up indo scan() callsselscan(),
which callssoo select() for all the sockets that the cor-
responding call toselect() specified in its three bitmaps.
do scan() also callsundo scan() to remove this thread
from select queues of the selected sockets.

2.3 ufalloc()
The kernel functionufalloc() is called to allocate a

new file descriptor for a process. This function is called
as a result of theopen(), socket(), socketpair(), dup(),
dup2() andaccept() system calls.

UNIX semantics for file descriptor allocation require
that the kernel allocate the lowest-numbered available
descriptor. This prevents the use of a straightforward
scalable implementation, such as a free list. Instead, all
of the UNIX variants that we know of, including BSD-
derived systems such as Digital UNIX, and System V Re-
lease 4 systems such as Solaris, use a linear search of the
file descriptor table. The search starts with file descriptor
0 and continues to the firstNULL entry. The cost of this
search is roughly proportional to the number of open file

descriptors, although it might complete before checking
all of the possible descriptor table slots.

3 Problems in select() and ufalloc()
As we observed in section 1, Maltzahn et. al. [11]

found that the Squid proxy server performs no better
than the older CERN proxy under real workloads, con-
tradicting the study by Chankhunthod et al.[5], which
concluded that Harvest is an order of magnitude faster
than the CERN proxy. Indeed, a simple LAN-based ex-
periment using a simulated client load does show a big
performance difference between Squid and the CERN
proxy.

In an attempt to explain this peculiar result, we tried
to understand why Squid’s performance under real load
is so much worse than under ideal conditions. One fac-
tor that is different in the two scenarios is that under real
load Squid manages a much larger number of simultane-
ous connections than in a LAN-based test scenario. This
is because of much larger delays experienced in WANs.
Because WAN environments have larger round-trip times
(RTTs), and are more likely to exhibit packet losses,
HTTP connections tend to last much longer in WAN en-
vironments than in simple LAN environments. There-
fore, for a given connection arrival rate, a WAN-based
HTTP server will have more open connections than a
server in a LAN environment.

Richardson’s measurements of Digital’s Palo Alto
Web proxies [19] show between 30 and 950 simulta-
neously open connections, depending on time of day.
Richardson’s measurements also show that while the me-
dian response time is about 250 msec., the mean is 2.5
seconds: some connections stay open for a very long
time. The large ratio of mean to median holds over a
wide range of response sizes (although the 10:1 ratio
only holds when all response sizes are considered to-
gether). This implies that at any given time, most of the
open connections arecold (idle for long intervals), and
only a few arehot.

Following this intuition, we tried to evaluate the effect
of a large number of cold connections on Squid perfor-
mance. We used DCPI [1] to profile a system running
the Squid proxy under a carefully designed request load.
To simulate the effect of large WAN delays, we set up a
dummy HTTP client process on a client machine. This
process opened a large number (100-2000) of connec-
tions to the Squid server but subsequently made no re-
quests on these connections. We refer to this process as
theload-adding client. Another process on the client ma-
chine simulated a small number (10-50) of HTTP clients,
which repeatedly made HTTP requests of the proxy. Each
request retrieved a 1259-byte response. We used the scal-
able client (S-Client) architecture from Banga and Dr-
uschel [3].

In our tests, we ran the Squid server process on an
AlphaStation 500 (400Mhz 21164, 8KB I-cache, 8KB
D-cache, 96KB level 2 unified cache, 2MB level 3 uni-
fied cache, SPECint95 = 12.3) equipped with192MB of
physical memory. The server operating system was Digi-
tal UNIX 4.0B, with the latest patches that were available
at the time. The client machine was a 333Mhz AlphaSta-
tion 500 (same cache configuration as above, SPECint95
9.82) with 640MB of physical memory, running DUNIX
3.2C. The Squid version used was Squid-1.1.11. The
client and server were connected using a 100Mbps FDDI
network.

This experiment indicates that up to 53% of the sys-
tem’s CPU time is being spent insideselect() (and its
various components –selscan(), soo select(), etc.). Up
to 11% of the CPU is being spent by the user process in
collating information from the bitmaps returned byse-
lect().

Our detailed results are shown in Figure 1. The x-
axis represents the number of cold connections. Curves
are plotted, for both 10 hot connections and 50 hot con-
nections, showing the percentage of CPU time spent in
kernel-mode functions related toselect(), and the per-
centage of CPU time spent in the user-modeselect()
loop.

0 2000500 1000 1500
Cold connections

0

80

20

40

60

%
 C

PU
 ti

m
e

gi
ve

n
m

od
e user-mode, 10 hot connections

user-mode, 50 hot connections
kernel, 10 hot connections
kernel, 50 hot connections

Figure 1:select() costs in unmodified kernel

Figure 1 shows that the costs of both the kernelse-
lect() implementation and the user-modeselect() loop
rise significantly with increasing numbers of cold con-
nections. Also, these costs are relatively independent of
the number of hot connections, up to about 1000 cold
connections.

The costs are initially linear in the number of cold
connections, but eventually they flatten out. As the num-
ber of cold connections increases, the system spends more

CPU time in each call toselect(), and so the calls tose-
lect() come less often. This causes the number of pend-
ing events returned byselect() to increase (at low loads,
select() usually returns just one pending event, but when
called infrequently, it often returns several). The cost of
eachselect() call is thus amortized over a larger number
of interesting events. Thus, the total CPU cost ofse-
lect(), which is proportional to the number ofselect()s
per second times the cost of eachselect, tends to level
off.

These numbers were generated with a request load of
about 100 requests/second. At higher rates,select() is
still important, butufalloc() also consumes significant
CPU time, because of its linear search algorithm. A typ-
ical DCPI profile for the system above, with 750 cold
connections, 50 hot connections, and 220 new connec-
tions/second, is shown in Table 1.

CPU % Procedure Mode
21.91% all kernelselectfunctions kernel
8.31% soo select() kernel
7.56% selscan() kernel
4.82% undo scan() kernel
1.22% select() kernel

17.79% ufalloc() kernel

4.23% comm select() user

1.71% Xsyscall() kernel
1.68% doprnt() user
1.32% idle thread() kernel
1.20% memset() user
1.15% cache lookup() kernel
1.10% namei() kernel

750 cold connections, 50 hot connections,
220 requests/second

Table 1: Example profile for unmodified kernel

In summary, the current implementations ofselect()
andufalloc() do not scale well with the number of open
connections in a server process. Both algorithms do work
that is linear in the number of connections being man-
aged by the process, and proxies in WAN environments
tend to have many open connections. In the next section
we will describe our implementation of scalable versions
of these functions.

4 Scalable select() and ufalloc()
In this section we describe our design for scalable ver-

sions ofselect() andufalloc(). We also describe our pro-
totype implementation of these designs in Digital UNIX.

4.1 select()
Consider an event-driven server process waiting for

activity on any of a few thousand sockets. Recall from
Section 2 thatselect() always performs a full scan
through all of these sockets, either to find those few that
are currently ready, or to indicate that a thread is waiting
for events on each of the sockets.

A full scan is also performed after the protocol code
processes an incoming packet and callsselect wakeup()
to unblock a thread waiting insideselect(). The full scan
is performed even though only a few of the sockets are
actually ready. This wasted effort is expended because,
between the call toselect wakeup() and the invocation
of do scan(), we throw away the information about the
identity of the socket that has become ready.selscan()
then does a significant amount of work to rediscover the
set of ready sockets.

The key idea of our design is to preserve information
about the change in the state of a socket betweense-
lect wakeup() anddo scan(). We use this information
to prune both the initial scan, and the scan after these-
lect wakeup(), to inspect only those sockets that need
inspection. These are the sockets either about which we
have no prior information, or for which we have state-
change hints from the protocol-processing layer.

We changed the Digital UNIX kernel to keep track
of three sets for each thread, named READY, INTER-
ESTED, and HINTS. (The first two of these sets actually
consist of three component sets, one for read-ready de-
scriptors, one for write-ready descriptors and one for ex-
ceptions.) The INTERESTED set is the subset of sock-
ets that the thread is currently interested in selecting on.
The READY set is a subset of the INTERESTED set
and includes those sockets which the kernel thinks are
ready. The kernel maintains state-change information
about sockets in the INTERESTED set, rather than for
the full set of sockets open for a thread. This state-change
information is maintained as the HINTS set. The HINTS
set includes sockets that might have become ready since
the last call toselect(), and is updated by the protocol
layer when a packet arrives for a socket.

Each call toselect() specifies a SELECTING set for
the thread, which is used to compute the new values of
the READY and INTERESTED sets.select() uses the
HINTS and READY sets to prune its initial scan. It
checks only those sockets which are in the SELECTING
set and either:

1. are not in the old INTERESTED set, or

2. are in the old READY set, or

3. are in the HINTS set

Mathematically, we can express the computation of

these sets as:

INTERESTEDnew =

SELECTING [INTERESTEDold

READYnew =

C(INTERESTEDnew \

(INTERESTEDold [READYold [HINTS))

whereC expresses the computation of checking the
status of descriptors in its argument set.

The computation ofC’s argument set above appears to
have complexity proportional to the size of the SELECT-
ING set. We took care to optimize this computation and
its data-cache footprint. The resulting code has a very
small cost relative to other parts ofselect().

The set returned fromselect() is:

READYto user = SELECTING \READYnew

A descriptor must be removed from the INTERESTED
sets ofall threads in a process at some point between the
time that the descriptor is closed and the time that it is
next allocated byany thread in the process.

For each socket, we record the set of processes that
have a reference to the socket. In the protocol processing
code, when a packet comes in for a socket,sowakeup()
records a hint in the HINTS sets of each of the threads in
the referencing processes for which this socket is present
in the INTERESTED set of the thread.sowakeup() also
wakes up all such threads that are blocked inselect().
After a thread is woken up inselect(), it scans only those
sockets in its HINTS set.

0 0 1 1

0123

1 1 1 1

4567

Level 0 map

Level 1 map

01

Figure 2: Two-level ufalloc bitmap

4.2 ufalloc()
The existing ufalloc() implementation uses a lin-

ear search to find the lowest-numbered free descriptor.
We converted this into a logarithmic-time algorithm by
adding an auxiliary data structure, a two-level tree of
bitmaps. The collection of all the level-1 nodes can be
thought of as a single bitmap;each bit in this bitmap de-
scribes the allocation state of one file descriptor. One-

valued bits in this bitmap correspond to allocated de-
scriptors. The level-1 bitmap is stored as an array of
nodes.

Each bit in the level-0 bitmap describes the state of
an entire level-1 node. One-valued bits in this bitmap
correspond to level-1 nodes with no zero bits; a zero-
valued bit in the level-0 bitmap corresponds to a level-1
node with at least one zero bit.

Figure 2 shows an example of such a tree. For sim-
plicity, this figure depicts the nodes as 4-bit integers, al-
though our actual implementation uses 64-bit integers.
We use the Alpha’s little-endian bit-order in this exam-
ple. The example tree shows that descriptors 0, 1, and
4 through 7 are allocated, while descriptors 2 and 3 are
free.

When a process wants to allocate a new file descriptor,
the level-0 bitmap is searched for the first zero bit. The
index of this bit is used as an index into the array of level-
1 nodes, and the indexed node is then searched to find the
first zero bit. Efficient algorithms exist for finding the
first zero bit in a word, but we have found that a simple
linear search is sufficiently fast, since the dominant cost
on modern CPUs is the number of data-cache misses, not
the number of instructions executed.

When a descriptor is deallocated, the appropriate bits
are cleared in both bitmaps. This leads to a constant-time
cost for deallocation.

With the level-1 nodes and the entire level-0 bitmap
represented as 64-bit words, this algorithm directly sup-
ports 4096 descriptors per process. A straightforward
generalization to a deeper tree would support an enor-
mous number of descriptors, even if a smaller word size
were used.

5 Experimental Evaluation
We evaluated the effects of our implementation ofse-

lect() and ufalloc() on the performance of two event-
driven Internet servers: the Squid proxy, and the thttpd [24]
Web server (we used a modified version of thttpd with
numerous performance improvements [18]). These ex-
periments were performed using the same server and client
systems describe in Section 3. We also measured the ef-
fect of our changes on the performance of Digital’s Palo
Alto proxies.

5.1 Scalability with respect to connection rate
The S-Client architecture introduced by Banga and

Druschel [3] allows the generation of high HTTP request
rates, using a small number of client machines. We used
S-Clients to vary the load on the server. At the lowest
load, the server is underutilized; at the higher loads, the
server is the bottleneck.

For each request rate, we ran two kinds of bench-
marks. In the naive benchmark, we used only enough S-

0 800200 400 600
Requests per second

0

70

10

20

30

40

50

60
R

es
po

ns
e

ti
m

e
(m

se
c)

Old ufalloc, old select
New ufalloc, old select
New ufalloc, new select
Naive benchmark

Figure 3: Squid response times – 1259-byte files

0 800200 400 600
Requests per second

0

70

10

20

30

40

50

60

%
 C

P
U

 id
le

 ti
m

e

Old ufalloc, old select
New ufalloc, old select
New ufalloc, new select

Figure 4: Squid idle time – 1259-byte files

Clients to generate the desired request rate. In the more
realistic benchmark, we also used a load-adding client,
to simulate the presence of long-delay connections. The
load-adding client was run with 750 infinitely slow con-
nections. (We show the effect of varying the number of
slow connections in Section 5.2.)

All clients, in all of the experiments, repeatedly re-
quested a single file of a fixed sized. In some experi-
ments, we used an 8192-byte file; this is within the range
of typical response sizes reported for the Web. In other
experiments, we used a 1259-byte file; the shorter file
size places more emphasis on per-connection overheads.

For our experiments using the Squid proxy server, we
arranged things so that each request received by the proxy
would generate an “If-Modified-Since” message from the
proxy to the origin server, but the actual data would be
served from the proxy’scache. The origin server ran
on identical hardware (a 400Mhz AlphaStation 500), us-
ing the thttpd server program; we ensured that the origin
server was never the bottleneck.

Figure 3 shows how the response time of the Squid
proxy varies with request rate, for 1259-byte files. The
results for all kernels on the naive benchmark are effec-
tively identical; for the realistic benchmark, we plot dif-
ferent curves for the different kernels. For each curve,
the final point shows the “saturation throughput” for the
given kernel; beyond this point, increasing the offered
load did not increase throughput. This figure clearly
shows that the presence of adding slow connections in
the realistic benchmark drastically reduces the through-
put achieved with the unmodified kernel relative to the
naive benchmark. It also shows that our new implemen-
tations ofselect() andufalloc() solve this performance
problem. The performance of the fully modified kernel
is nearly independent of the presence of many slow con-
nections.

Figure 4 shows the effect of the new versions ofse-
lect() and ufalloc() on server CPU idle time, also for
1259-byte files. At lower request rates, where the server
is underutilized, our modifications greatly increase idle
time for the realistic benchmark. The increase in idle
time reflects the improved scalability of the system in
the presence of cold connections.

0 600100 200 300 400 500
Requests per second

0

80

20

40

60

R
es

po
ns

e
ti

m
e

(m
se

c)

Old ufalloc, old select
New ufalloc, old select
New ufalloc, new select
Naive benchmark

Figure 5: Squid response times – 8192-byte files

Figure 5 shows the response time of the Squid proxy
for 8129-byte files. As in Figure 3, the fully modified
kernel provides a higher saturation request rate than the
original kernel, and yields lower response times at all re-
quest rates. However, the new kernel’s performance on
the realistic benchmark does not come quite as close to
the performance of the naive benchmark; this may be
due to data-cache collisions between the larger packets
and the kernel’s data structures. In these tests, the un-
modified kernel showed no idle time for all request rates,
while the new kernel showed some idle time up to 300

0 1000100 200 300 400 500 600 700 800 900
Requests per second

0

100

20

40

60

80
%

 C
P

U
 ti

m
e

otherother

select

ufallocufalloc

 old select
new ufalloc/

new ufalloc/
 new select

Figure 6: CPU share of ufalloc() and select(), Squid Proxy – 1259-byte files

requests/sec.
We used DCPI to obtain CPU time profiles of the

server. Figure 6 shows the fraction of CPU time used
in select() and inufalloc(), for various request rates, us-
ing 1259-byte files. (The results for tests using 8192-
byte files are analogous.) Ineach group of three bars, the
leftmost bar represents the unmodified kernel, the center
bar represents the kernel with the newselect(), and the
rightmost bar represents the kernel with new versions of
bothselect() andufalloc(). At rates above 600 requests
per second,each bar is independently labelled. The top
section of each bar shows the CPU time spent inufal-
loc(), and the middle section shows the CPU time spent
in select(). The bottom section of each bar (“others”)
shows the CPU time used for all other components of the
server, including user-mode code. Idle time is not shown;
it corresponds to the space above the bar, if any.

Figure 6 shows that the newufalloc() almost entirely
eliminates the CPU costs of descriptor allocation in all
of the tested configurations. The newselect() also costs
much less than the oldselect().

When the server is underutilized, at rates below about
200 requests per second, the CPU profiles show that the
newselect() provides an additional performance impact:
although we have not changed the implementation of any
code covered by the “others” part of the profile, and the
total throughput has not changed, the CPU costs of the
“others” components has been reduced, relative to the
unmodified kernel. We attribute this to better data-cache
behavior, because the newselect() has a much smaller
data-cache footprint than the original implementation. The
modifiedufalloc() may also have a similar effect on cache
performance. The improved data-cache footprint ofse-

lect() is probably responsible for some of the throughput
gains in the server-bound configurations.

CPU % Procedure Mode
21.96% all idle time kernel

11.49% all kernelselectfunctions kernel
11.24% select() kernel
0.15% new soo select() kernel
0.10% new selscan one() kernel

16.37% comm select() user

2.61% tcp slowtimo() kernel
1.73% tcp fasttimo() kernel
1.39% doprnt() user
1.21% Xsyscall() kernel
1.10% XentInt() kernel
1.00% bcopy() kernel
0.91% read io port() kernel
0.90% memset() user

750 cold connections, 50 hot connections, 220
requests/second

Table 2: Example profile for modified kernel

As can be seen in Figure 3, even with our kernel modi-
fications, the realistic benchmark still causes a small per-
formance degradation compared to the naive benchmark.
We attribute this to the inherently poor scalability of the
select() programming interface. This interface passes
information proportional to the total number of active
connections on each call toselect(). Moreover, when

select() returns, the user process must do work propor-
tional to the total number of active connections to dis-
cover which descriptors have pending events. Finally,
select() overwrites its input bitmaps, thus requiring ad-
ditional user-mode work to create these bitmaps on each
call. These costs cannot be eliminated with the current
interface. In a separatepublication [4], we propose a
new, scalable interface to replaceselect()

Table 2 shows a profile of the modified kernel, made
under the same conditions as the profile of the original
kernel shown in Table 1. The new kernel spends 22%
of the time in the idle loop, compared to almost no idle
time for the original kernel. The original kernel spent
about 22% of the CPU inselect() and its subroutines,
and 18% of the CPU inufalloc(). The modified kernel
spends 11% of the CPU inselect(), and virtually none
in ufalloc(). However, the busiest function in the sys-
tem is now the user-levelcomm select() function, us-
ing 16% of the CPU. The almost 28% of the CPU to-
gether consumed by the kernelselect() and user-mode
comm select() functions is a result of the poorly scal-
ing bitmap-basedselect() programming interface.

0 2800400 800 1200 1600 2000 2400
Requests per second

0

35

5

10

15

20

25

30

R
es

po
ns

e
ti

m
e

(m
se

c)

Unmodified kernel
New ufalloc, old select
New kernel
Naive
 benchmark

Figure 7: Response time for thttpd – 1259 byte files

Our experiments using the thttpd [24] Web server
gave similar results. Using our modified kernel (with
new implementations of bothselect() and ufalloc()),
server throughput (at server saturation) improved by 58%
for 1259-byte files, as shown in figure 7. For 8192-byte
files, throughput increased by 37%; further improvement
may have been limited by the available network band-
width, rather than by the server. At lower request rates,
the modified kernel showed much more idle time. For
example, at 100 requests/sec. for a 1259-byte file, the
unmodified kernel showed 16% idle time; the modified
kernel showed 88% idle time. At at 100 requests/sec. for
an 8192-bytefile, the unmodified kernel had no idle time,
but the modified kernel still showed 73% idle time.

5.2 Scalability with respect to connection count
To demonstrate that our implementations ofselect()

andufalloc(), unlike the original code, does scale well as
the number of cold connections increases, we performed
another series of experiments. In these experiments, we
varied the number of connections from the load-adding
client, between 0 and 2000 connections, and then in-
creased the request rate until the server was saturated.

0 2000500 1000 1500
Number of cold connections

400

1000

500

600

700

800

900

T
hr

ou
gh

pu
t

(c
on

ne
ct

io
ns

/s
ec

.)

New ufalloc, new select

New ufalloc, old select

Old ufalloc, new select

unmodified kernel

Figure 8: Performance of Squid Proxy – Scalability

Figure 8 shows that the throughput of the original ker-
nel drops by 44% as the number of of cold connections
increases from zero to 2000. The figure also shows that
the kernel with our scalableufalloc() has a somewhat
smaller dependency on the number of cold connections,
and for the kernel with our implementations of bothse-
lect() and ufalloc(), its throughput drops by only 14%
over the same range. We believe that the remaining de-
pendency results from the user-level costs of the pro-
gramming interface forselect().

6 Performance of a live system
Digital Equipment Corporation operates a Web proxy

system, in Palo Alto, California, that serves a large frac-
tion of Digital’s internal users. During a typical week-
day, the system handles as many as 2.6 million HTTP
requests, from at least 5570 individual client hosts.

We installed our modified kernel on the proxy server,
a 500 MHz AlphaStation 500 system (21164A processor,
SPECInt95 = 15.0) with 512 MBytes of RAM. We then
ran the system using either the unmodified kernel or our
modified kernel, each for an entire calendar day (mid-
night to midnight, Pacific Time), and collected extensive
monitoring information.

During these these tests, the proxy server used version
3.1.2c-OSF of the NetCache software [16] from Network
Appliance, Inc. Like Squid, NetCache was based on the
Harvest Cache software, although NetCache and Squid

0 6010 20 30 40 50
Mean requests/second

0

100

20

40

60

80
C

PU
 %

 in
 g

iv
en

 m
od

e

Idle, old

Kernel, old

Idle, new

Kernel, new

Figure 9: CPU costs as a function of request rate

Date Kernel Requests Max. Peak
version handled alloc. req.

fds rate
1998-04-16 old 2581113 107
1998-04-23 new 2602448 755 116

Table 3: Statistics for live tests

have since evolved separately. Because caching tends to
reduce the number of simultaneous network connections,
during our trials we operated this software with caching
disabled. This increases the load on the system, but for
various reasons does not significantly increase response
time as seen by the users.

Table 3 shows some statistics for each of the trials.
The “Max. alloc. fds” column shows the largest number
of file descriptors allocated to a single process at any one
point during the trial; the “Peak req. rate” column shows
the largest number of requests logged during a single sec-
ond over the course of the day.

6.1 Effect of request rate on CPU load
The operating system maintains counts of the num-

ber of clock interrupts that occur in each system mode
(user-mode, kernel-mode, and idle). During the course
of each trial, we logged these counters every 15 minutes,
which allowed us to reconstruct the mean time spent in
each mode during the 15 minutes prior to each log entry.
The proxy software creates a timestamped log entry for
each HTTP request it receives, so we can also count the
number of requests handled in each 15 minute period,
and then compute the mean request rate over that period.

Figure 9 shows how CPU idle time, and CPU kernel-

mode time, vary as a function of the mean request rate.
Each point on the scatterplot represents one 15-minute
sample. The circles correspond to idle time; the squares
correspond to kernel-mode time. The filled marks show
performance with the old versions of bothselect() and
ufalloc() (the trial of 1998-04-16). The open marks show
the performance of the new implementations (the trial of
1998-04-23).

We then computed linear regressions for each set of
samples. The regression lines are shown in Figure 9; the
numeric results are given in Table 4. (User-mode regres-
sions are given in the table, but not shown in the fig-
ure.) Each sample set includes 96 points (24 hours of 15-
minute samples). The correlation between kernel-mode
time and request rate is quite close; the correlation for
idle time is not quite as good, probably because of some
outliers caused by daily “housekeeping” tasks done dur-
ing periods of low request rate. Because the outliers all
occur at low request rates (that is, late at night), we re-
calculated the regressions after excluding samples taken
at rates below 20 requests/second. These regressions,
shown in Table 5, show higher correlation coefficients
for idle time and user-mode time.

The regressions for idle time and kernel-mode time
show significantly steeper slopes for the unmodified ker-
nel, compared to those for the new implementations of
select() and ufalloc(). The regressions for user-mode
time suggest that the new kernel performs slightly better,
perhaps because of better data-cache utilization, but the
difference might not be significant.

Although one cannot necessarily expect linear behav-
ior at very high request rates, a linear extrapolation of
the idle time regressions from the full data sets gives X-
intercepts of 58 requests/sec. for the unmodified kernel,

Date Kernel CPU Slope Corr.
version mode coeff.

1998-04-16 old idle -1.67 -0.96
1998-04-23 new idle -1.34 -0.92

1998-04-16 old kernel 1.09 0.98
1998-04-23 new kernel 0.85 0.99

1998-04-16 old user 0.58 0.77
1998-04-23 new user 0.49 0.66

N = 96

Table 4: Linear regressions: full 1-day data sets

Date Kernel CPU Slope Corr.
version mode coeff.

1998-04-16 old idle -1.69 -0.97
1998-04-23 new idle -1.46 -0.98

1998-04-16 old kernel 1.02 0.96
1998-04-23 new kernel 0.85 0.99

1998-04-16 old user 0.68 0.97
1998-04-23 new user 0.65 0.99

N = 54

Table 5: Linear regressions: above 20 requests/second

and 69 requests/sec. for the new implementation. Us-
ing the truncated data sets (Table 5), the calculated X-
intercepts are 57 and 68 requests/sec., respectively. This
suggests that the modified kernel might support a peak
request rate about 19% higher than the unmodified ker-
nel, in this application.

Note that our samples were averaged over 15-minute
intervals. The actual one-second peak rates experienced
during these trials (see Table 3) were 107 requests/sec.
for the unmodified kernel, and 116 requests/sec. for the
modified kernel. Clearly, the systems can support rates
higher than the extrapolation of idle time implies. The
main significance of our performance improvements may
be not the increase in peak throughput, but the decrease
in queueing delay (and response time) at high through-
puts.

6.2 Profile results
We obtained CPU-time profiles, using DCPI, for the

proxy server during periods of heavy load, for both the
original kernel (Table 6) and our modified kernel (Ta-
ble 7). Each profile covers a period of exactly one hour.
The tables include all procedures accounting for at least
1% of the non-idle CPU time.

The first column in each profile shows the fraction of
CPU time spent in each function or group of procedures.

CPU % Non-idle Procedure Mode
CPU %

10.77% all idle time kernel
89.23% 100.00% all non-idle time kernel

35.27% 39.53% all select functions kernel
13.51% 15.14% selscan kernel
12.56% 14.08% soo select kernel
7.48% 8.38% undo scan kernel
1.64% 1.83% select kernel

12.64% 14.17% commSelect user

1.74% 1.95% all TCP functions kernel

1.49% 1.67% malloc-related #1 user
1.39% 1.56% malloc-related #2 user
1.09% 1.22% mutex unblock user
1.03% 1.16% read io port kernel
0.95% 1.07% bcopy kernel
0.94% 1.05% memGrep user

Profile on 1998-04-16 from 10:00 to 11:00 PDT
mean load = 54 requests/sec.
peak load ca. 98 requests/sec

Table 6: Profile of unmodified kernel on live proxy

As the first row in each table shows, even during peri-
ods of heavy load, some time is spent in the kernel’s idle
thread and its children. Therefore, the second column
shows the fraction of non-idle CPU time spent in all non-
idle procedures; this is a more useful basis for comparing
the two kernels. Note that the profiles include a mixture
of kernel-mode and user-mode procedures.

The modified kernel spends 30% of the non-idle CPU
time inselect() and related procedures, compared to al-
most 40% spent in such procedures by the unmodified
kernel. However, kernel-modeselect() processing is still
a significant burden on the CPU. As in Figure 2, con-
siderable time is spent in the user-modecommSelect()
procedure (Squid and NetCache apparently use slightly
different names for the same procedure). These obser-
vations support our belief that the bitmap-basedselect()
programming interface leads to unnecessary work, and
probably to significant capacity misses in the data caches.

In experiments with simulated loads, we observed that
NetCache on our kernel callsselect() about 7 times as
it does on the unmodified kernel. We believe this is
because our fasterselect() causes a NetCache thread
to return from select() with usually only one ready
descriptor1. Before the next event arrives, other Net-
Cache threads callselect() to discover this event again.
In the unmodified kernel, each call toselect() takes

1NetCache uses multiple event-driven threads, presumably for ex-
ploiting the parallelism available on SMP machines.

CPU % Non-idle Procedure Mode
CPU %

16.29% all idle time kernel
83.71% 100.00% all non-idle time kernel

25.11% 30.00% all select functions kernel
11.23% 13.42% new soo select kernel
7.73% 9.24% new selscan one kernel
5.67% 6.77% select kernel
0.04% 0.05% new undo scan kernel

15.33% 18.32% commSelect user

2.70% 3.23% all TCP functions kernel

2.56% 3.05% in pcblookup kernel
1.09% 1.30% mutex unblock user
1.01% 1.21% bcopy kernel
1.00% 1.19% read io port kernel
0.97% 1.16% malloc-related #1 user
0.93% 1.12% memGrep user
0.91% 1.09% malloc-related #2 user

Profile on 1998-04-23 from 10:00 to 11:00 PDT
mean load = 55 requests/sec.

peak load ca. 116 requests/sec

Table 7: Profile of modified kernel on live proxy

longer, and returns multiple events. This mayaccount
for the heavy use ofselect() in Table 7.

In this application, even the unmodified kernel spends
very little time inufalloc() (0.20%). However, the mod-
ified kernel spends even less time inufalloc() (0.03%).
For this proxy, the total number of open file descriptors
is relatively small. However, one might expect this frac-
tion to become more significant at higher request rates.

We are not entirely sure what caused the signifi-
cant increase in time that the modified kernel spends in
in pcblookup. This may be the result of an unfortunate
collision in the direct-mapped datacaches.

We note that in this real-world environment, for both
versions of the kernel, just over 1% of the non-idle CPU
time is spent in all kernel-related data movement (the
bcopy()). Even less time is spent computing checksums.
A moderate amount of time (between 2% and 3%) is
spent in TCP-related functions (which have been highly
optimized in Digital UNIX). These measurements rein-
force the emphasis placed by Kay and Pasquale[9] on
“non-data touching processing overheads”; however, they
failed to recognize that the poor scalability ofselect()
would ultimately dominate the other costs.

6.3 Data cache effects
We have speculated in several places that our kernel

modifications affect data cache utilization. DCPI allows

us to estimate the mean cycles per instruction (CPI) for
each procedure in a profile, and to estimate the fraction
of dynamic stalls caused by data-cache misses. We found
that the CPI for the user-modecommSelect() proce-
dure declined from 1.69 to 1.62 as a result of our kernel
changes, mostly because of fewer data-cache misses.

We also found that the CPI forin pcblookup() in-
creased from about 1.28 to 11.15 as an apparent re-
sult of our kernel changes, even though we did not
change the code for this kernel procedure. This suggests
that we somehow created a particularly unlucky colli-
sion in the data caches between the data structures for
in pcblookup() and those forselect().

7 Related Work
Operating system researchers and vendors have de-

voted much effort to improving Internet server perfor-
mance. One early experience that lead to published re-
sults was the 1994 California election server [14, 15];
another early study was performed at NCSA [12]. Op-
erating system vendors responded to complaints of per-
formance problems by improving various kernel mech-
anisms, especially by replacing BSD’s linear-time PCB
lookup algorithm [13, 21], and by changing certain ker-
nel parameter values. Vendors also provided tuning guides
for systems being used as Web servers [6].

In response to observations about the large context-
switching overhead of process-per-connection servers, re-
cent servers [5, 16, 22, 24, 25] have used event-driven
architectures. Measurements of these servers under lab-
oratory conditions indicate an order of magnitude perfor-
mance improvement [5, 20].

Maltzahn et. al. [11] reported the poor performance of
Squid under real conditions. Fox et al. [7], in describing
the Inktomi system, also briefly mention that their event-
driven front-ends spend 70% of their time in the kernel,
and attribute this to the state-management overhead of
a large number of simultaneous connections. However,
neither of these papers analyzed the reason for this phe-
nomenon in any detail.

8 Conclusion
We presented a detailed analysis of the effect of WAN

delays on the performance of event-driven servers, and
showed that linear scaling in theselect() andufalloc()
implementations leads to excessive kernel CPU consump-
tion.

We described scalable versions ofselect() andufal-
loc(), and evaluated their impact on the performance of
event-driven servers. We showed that these changes im-
prove the performance of Web servers and proxies on re-
alistic benchmarks, and on a live proxy, without harming
performance on naive benchmarks.

Our results show the need for a new, scalable interface

to replaceselect(). We are currently working to develop
this.

Acknowledgments
We are grateful to Kathy Richardson of Digital’s Net-

work Systems Laboratory, for providing data on the per-
formance of the Palo Alto Web proxies, and to Kathy
and to Jessie Stickgold-Sarah for helping us evaluate our
changes in the context of these proxies. We also thank
the USENIX referees for their comments.

References
[1] J. Anderson, L. M. Berc, et al. Continuous profil-

ing: Where have all the cycles gone? InProceed-
ings of the Sixteenth ACM Symposium on Operating
System Principles, San Malo, France, Oct. 1997.

[2] G. Banga, F. Douglis, and M. Rabinovich. Op-
timistic Deltas for WWW Latency Reduction. In
Proceedings of the1997 Usenix Technical Confer-
ence, Jan. 1997.

[3] G. Banga and P. Druschel. Measuring the Capacity
of a Web Server. InProceedings of the1997 Usenix
Symposium on Internet Technologies and Systems,
Dec. 1997.

[4] G. Banga, P. Druschel, and J. C. Mogul. Better op-
erating system features for faster network servers.
To be presented at the Workshop on Internet Server
Performance, June 1998.

[5] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell. A Hierarchical
Internet Object Cache. InProceedings of the1996
Usenix Technical Conference, Jan. 1996.

[6] Digital UNIX Tuning Parameters for Web Servers.
http://www.digital.com/info/internet/document/
ias/tuning.html.

[7] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. InProceedings of the Sixteenth ACM Sym-
posium on Operating System Principles, San Malo,
France, Oct. 1997.

[8] M. F. Kaashoek, D. R. Engler, G. R. Ganger, and
D. A. Wallach. Server Operating Systems. In1996
SIGOPS European Workshop, Connemara, Ireland,
Sept. 1996.

[9] J. Kay and J. Pasquale. The Importance of Non-
Data Touching Processing Overheads in TCP/IP. In
Proceedings of the ACM Communications Archi-
tectures and Protocols Conference (SIGCOMM),
pages 259–268, San Francisco, CA, Sept. 1993.

[10] A. Luotonen, H. F. Nielsen, and T. Berners-Lee.
CERN httpd 3.0A. http://www.w3.org/pub/WWW
/Daemon/, July 1996.

[11] C. Maltzahn, K. J. Richardson, and D. Grunwald.
Performance Issues of Enterprise Level Web Prox-
ies. InProceedings of the ACM SIGMETRICS ’97
Conference, Seattle, WA, June 1997.

[12] R. E. McGrath. Performance of Several HTTP
Demons on an HP 735 Workstation. http://www.
ncsa.uiuc.edu/InformationServers/Performance/
V1.4/report.html, Apr. 1995.

[13] P. E. McKenney and K. F. Dove. Efficient demul-
tiplexing of incoming tcp packets. InProceedings
of the SIGCOMM ’92 Conference, pages 269–280,
Aug. 1993.

[14] J. C. Mogul. Network behavior of a busy web
server and its clients. Technical Report WRL 95/5,
DEC Western Research Laboratory, Palo Alto, CA,
1995.

[15] J. C. Mogul. Operating system support for busy in-
ternet servers. InProceedings of the Fifth Workshop
on Hot Topics in Operating Systems (HotOS-V), Or-
cas Island, WA, May 1995.

[16] Network Appliance, Inc.,NetCache. http://www.
netapp.com/level3/netcache/datasheet.html.

[17] J. Ousterhout. Why Threads Are A Bad Idea (for
most purposes). Invited talk at the 1996 USENIX
Technical Conference. http://www.scriptics.com/
people/john.ousterhout/threads.ps.

[18] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-
Lite: A unified I/O buffering and caching system.
Technical Report TR97-294, Rice University, CS
Dept., Houston, TX, 1997.

[19] K. J. Richardson. Personal communication, 1997.

[20] S. E. Schechte and J. Sutaria. A Study of the Effects
of Context Switching and Caching on HTTP Server
Performance. http://www.eecs.harvard.edu/ stu-
art/Tarantula/FirstPaper.html.

[21] Solaris 2 TCP/IP. http://www.sun.com/sunsoft/
solaris/networking/tcpip.html.

[22] Squid. http://squid.nlanr.net/Squid/.

[23] W. Stevens.Unix Network Programming. Prentice-
Hall, Englewood Cliffs, NJ, 1990.

[24] thttpd. http://www.acme.com/software/thttpd/.

[25] Zeus. http://www.zeus.co.uk/.

