
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Kqueue: A genericand scalableevent notification facility

JonathanLemon jlemon@FreeBSD.org

FreeBSDProject

Abstract

ApplicationsrunningonaUNIX platformneedto beno-
tified whensomeactivity occurson asocketor otherde-
scriptor, andthis is traditionallydonewith theselect()or
poll() systemcalls. However, it hasbeenshown that the
performanceof thesecallsdoesnotscalewell with anin-
creasingnumberof descriptors.Theseinterfacesarealso
limited in therespectthatthey areunableto handleother
potentiallyinterestingactivitiesthatanapplicationmight
be interestedin, thesemight includesignals,file system
changes,and AIO completions. This paperpresentsa
genericevent delivery mechanism,which allows an ap-
plication to selectfrom a wide rangeof event sources,
andbenotifiedof activity on thesesourcesin a scalable
andefficient manner. The mechanismmay be extended
to coverfutureeventsourceswithoutchangingtheappli-
cationinterface.

1 Intr oduction

Applicationsareofteneventdriven,in thatthey perform
their work in responseto eventsor activity external to
the applicationandwhich aresubsequentlydeliveredin
somefashion. Thus the performanceof an application
often comesto dependon how efficiently it is able to
detectandrespondto theseevents.

FreeBSDprovidestwo systemcalls for detectingac-
tivity on file descriptors,theseare poll() and select().
However, neitherof thesecalls scalevery well as the
numberof descriptorsbeing monitoredfor events be-
comeslarge.A highvolumeserverthatintendsto handle
severalthousanddescriptorsquickly findsthesecallsbe-
comingabottleneck,leadingto poorperformance[1] [2]
[10].

Thesetof eventsthattheapplicationmaybeinterested
in is not limited to activity on an openfile descriptor.
An applicationmay also want to know when an asyn-
chronousI/O (aio) requestcompletes,whena signal is

deliveredto theapplication,whenafile in thefilesystem
changesin somefashion,or whena processexits. None
of thesearehandledefficiently at themoment;signalde-
liveryis limitedandexpensive,andtheothereventslisted
requireaninefficient polling model. In addition,neither
poll() nor select()can be usedto collect theseevents,
leadingto increasedcodecomplexity dueto useof mul-
tiple notificationinterfaces.

This paperpresentsa new mechanismthatallows the
applicationto registerits interestin a specificevent,and
thenefficiently collect the notificationof the event at a
later time. Thesetof eventsthat this mechanismcovers
is shown to includenot only thosedescribedabove, but
may alsobe extendedto unforeseenevent sourceswith
no modificationto theAPI.

Therestof this paperis structuredasfollows: Section
2 examineswherethecentralbottleneckof poll() andse-
lect() is, Section3 explainsthedesigngoals,andSection
4 presentstheAPI of new mechanism.Section5 details
how to usethenew API andprovidessomeprogramming
examples,while the kernelimplementationis discussed
in Section6. Performancemeasurementsfor someap-
plicationsare found in Section7. Section8 discusses
relatedwork, andthe paperconcludeswith a summary
in Section9.

2 Problem

The poll() and select()interfacessuffer from the defi-
ciency that the applicationmustpassin an entirelist of
descriptorsto be monitored,for every call. This hasan
immediateconsequenceof forcingthesystemto perform
two memorycopiesacrosstheuser/kernelboundary, re-
ducing the amountof memorybandwidthavailable for
other activities. For large lists containingmany thou-
sandsof descriptors,practicalexperiencehasshown that
typically only a few hundredactuallyhave any activity,
making95%of thecopiesunnecessary.

Upon return,the applicationmustwalk the entirelist



to find the descriptorsthat the kernelmarked ashaving
activity. Sincethe kernelknew which descriptorswere
active, this resultsin a duplicationof work; theapplica-
tion mustrecalculatetheinformationthatthesystemwas
alreadyawareof. It would appearto bemoreefficient to
havethekernelsimplypassbacka list of descriptorsthat
it knows is active. Walking the list is an O(N) activity,
which doesnotscalewell asN getslarge.

Within thekernel,thesituationis alsonot ideal.Space
mustbe found to hold the descriptorlist; for large lists,
this is doneby calling malloc(), and the areamust in
turn be freed beforereturning. After the copy is per-
formed, the kernel must examineevery entry to deter-
minewhetherthereis pendingactivity on thedescriptor.
If the kernelhasnot foundany active descriptorsin the
currentscan,it will thenupdatethe descriptor’s selinfo
entry; this informationis usedto performa wakeupon
the processin the event that it calls tsleep()while wait-
ing for activity on the descriptor. After the processis
wokenup, it scansthelist again,looking for descriptors
thatarenow active.

This leadsto 3 passesover the descriptorlist in the
casewherepoll or selectactuallysleep;onceto walk the
list in order to look for pendingeventsand recordthe
selectinformation,a secondtime to find thedescriptors
whoseactivity causeda wakeup,anda third time in user
spacewheretheuserwalksthelist to find thedescriptors
which weremarkedactiveby thekernel.

Theseproblemsstemfrom the fact thatpoll() andse-
lect() arestatelessby design;that is, thekerneldoesnot
keepany recordof what the applicationis interestedin
betweensystemcallsandmustrecalculateit every time.
This designdecisionnot to keepany statein the kernel
leadsto maininefficiency in thecurrentimplementation.
If thekernelwasableto keeptrackof exactly which de-
scriptorsthe applicationwasinterestedin, andonly re-
turn a subsetof theseactivateddescriptors,muchof the
overheadcouldbeeliminated.

3 DesignGoals

Whendesigninga replacementfacility, theprimarygoal
wasto createa systemthatwould be efficient andscal-
able to a large numberof descriptors,on the order of
several thousand.The secondarygoal wasto make the
systemflexible. UNIX basedmachineshave tradition-
ally lacked a robust facility for event notification. The
poll andselectinterfacesarelimited to socket andpipe
descriptors;theuseris unableto wait for othertypesof
events, like file creationor deletion. Other eventsre-
quiretheuserto useadifferentinterface;notablysiginfo
andfamily mustbe usedto obtainnotificationof signal
events,andcalls to aiowait areneededto discover if an
AIO call hascompleted.

Anothergoalwasto keeptheinterfacesimpleenough
that it could be easilyunderstood,andalsopossibleto
convert poll() or select()basedapplicationsto the new
API with a minimumof changes.It wasrecognizedthat
if thenew interfacewasradicallydifferent,thenit would
essentiallyprecludemodificationof legacy applications
which mightotherwisetakeadvantageof thenew API.

Expandingtheamountinformationreturnedto theap-
plicationto morethanjust thefactthataneventoccurred
wasalsoconsidereddesirable.For readablesockets,the
user may want to know how many bytes are actually
pendingin the socket buffer in order to avoid multiple
read()calls. For listeningsockets,theapplicationmight
checkthe sizeof the listen backlogin orderto adaptto
theofferedload.Thegoalof providingmoreinformation
waskeptin mind whendesigningthenew facility.

The mechanismshould also be reliable, in that it
shouldnever silently fail or returnan inconsistentstate
to the user. This goal implies that thereshouldnot be
any fixedsizelists, asthey might overflow, andthatany
memoryallocationmustbedoneatthetimeof thesystem
call, ratherwhenactivity occurs,to avoid losing events
dueto low memoryconditions.

As an example,considerthe casewhereseveral net-
work packetsarrivefor asocket. Wecouldconsidereach
incomingpacketasa discreteevent,recordingoneevent
for eachpacket. However, thenumberof incomingpack-
etsis essentiallyunbounded,while theamountof mem-
ory in thesystemis finite; wewouldbeunableto provide
a guaranteethatno eventswouldbelost.

Theresultof theabovescenariois thatmultiple pack-
ets are coalescedinto a single event. Events that are
deliveredto the applicationmay correspondto multiple
occurrencesof activity on theeventsourcebeingmoni-
tored.

In addition, supposea packet arrives containing
�

bytes,andtheapplication,afterreceiving notificationof
theevent,reads� bytesfrom thesocket,where ��� �

.
The next time the event API is called, therewould be
no notificationof the � ��� ��� bytesstill pendingin the
socket buffer, becauseeventswould bedefinedin terms
of arriving packets. This forcesthe applicationto per-
form extrabookkeepingin orderto insurethatit doesnot
mistakenly lose data. This additionalburden imposed
on theapplicationconflictswith thegoalof providing a
simpleinterface,andsoleadsto thefollowing designde-
cision.

Events will normally considered to be “level-
triggered”,asopposedto “edge-triggered”.Anotherway
of puttingthisis to saythataneventis bereportedaslong
asa specifiedconditionholds,ratherthanwhenactivity
is actually detectedfrom the event source. The given
conditioncouldbe assimpleas“there is unreaddatain
thebuffer”, or it couldbemorecomplex. This approach



handlesthescenariodescribedabove,andallows theap-
plicationto performapartialreadonabuffer, yetstill be
notified of an event the next time it calls the API. This
correspondsto theexisting semanticsprovidedby poll()
andselect().

A final designcriteriawasthattheAPI shouldbecor-
rect, in that eventsshouldonly be reportedif they are
applicable.Considerthecasewherea packet arriveson
a socket, in turn generatingan event. However, before
the applicationis notified of this pendingevent, it per-
forms a close()on the socket. Since the socket is no
longeropen,theeventshouldnot bedeliveredto theap-
plication,asit is no longerrelevant. Furthermore,if the
eventhappensto be identifiedby thefile descriptor, and
anotherdescriptoris createdwith the sameidentity, the
event shouldbe removed, to precludethe possibility of
falsenotificationon thewrongdescriptor.

Thecorrectnessrequirementshouldalsoextendto pre-
existing conditions,wheretheeventsourcegeneratesan
eventprior to theapplicationregisteringits interestwith
the API. This eliminatesthe raceconditionwheredata
could be pendingin a socket buffer at the time that the
applicationregistersits interestin thesocket. Themech-
anismshouldrecognizethatthependingdatasatisfiesthe
“level-trigger” requirementandcreateaneventbasedon
this information.

Finally, thelastdesigngoalfor theAPI is thatit should
be possiblefor a library to usethe mechanismwithout
fear of conflicts with the main program. This allows
3	�
 party codethat usesthe API to be linked into the
applicationwithout conflict. While on the surfacethis
appearsto be obvious, several counterexamplesexist.
Within a process,a signalmay only have a singlesig-
nal handlerregistered,so library codetypically cannot
usesignals.X-window applicationsonly allow for asin-
gle event loop. The existing select()andpoll() calls do
not have this problem,sincethey arestateless,but our
new API, which movessomestateinto thekernel,must
be ableto have multiple event notificationchannelsper
process.

4 KqueueAPI

The kqueueAPI introducestwo new systemcalls out-
lined in Figure1. Thefirst createsa new kqueue,which
is anotificationchannel,or queue,wheretheapplication
registerswhich eventsit is interestedin, andwhereit re-
trieves the eventsfrom the kernel. The returnedvalue
from kqueue()is treatedasan ordinarydescriptor, and
canin turnbepassedto poll(), select(),or evenregistered
in anotherkqueue.

Thesecondcall is usedby theapplicationbothto reg-
ister new events with the kqueue,and to retrieve any
pendingevents. By combiningthe registrationand re-

int
kqueue(void)

int
kevent(int kq,

const struct kevent *changelist, int nchanges,
struct kevent *eventlist, int nevents,
const struct timespec *timeout)

struct kevent �
uintpt t ident; // identifier for event
short filter; // filter for event
u short flags; // action flags for kq
u int fflags; // filter flag value
intptr t data; // filter data value
void *udata; // opaque identifier

EV SET(&kev, ident, filter, flags, fflags, data, udata)

Figure1: KqueueAPI

trieval process,thenumberof systemcallsneededis re-
duced. Changesthat shouldbe applied to the kqueue
aregiven in the changelist, andany returnedeventsare
placedin theeventlist, up to themaximumsizeallowed
by nevents. Thenumberof entriesactuallyplacedin the
eventlistis returnedby thekevent()call. Thetimeoutpa-
rameterbehavesin thesamewayaspoll(); azero-valued
structurewill checkfor pendingeventswithoutsleeping,
while a NULL value will block until woken up or an
event is ready. An applicationmay chooseto separate
the registrationandretrieval calls by passingin a value
of zerofor nchangesor nevents, asappropriate.

Eventsareregisteredwith the systemby the applica-
tion via a struct kevent, andanevent is uniquelyidenti-
fied within thesystemby a ��������������������� ��!"�#�%$'& tuple.
In practicalterms,this meansthat therecanbeonly one
�(�)���%�����*� ��!"�#�%$�& pair for agivenkqueue.

The filter parameteris an identifier for a small piece
of kernelcodewhich is executedwhenthereis activity
from aneventsource,andis responsiblefor determining
whetheran event shouldbe returnedto the application
or not. The interpretationof the ident, fflags, anddata
fieldsdependon whichfilter is beingusedto expressthe
event. Thecurrentlist of filters andtheir argumentsare
presentedin thekqueuefilter section.

The flags field is usedto expresswhat actionshould
betakenon thekeventwhenit is registeredwith thesys-
tem, and is alsousedto returnfilter-independentstatus
informationuponreturn.Thevalid flag bits aregivenin
Figure2.

Theudatafield is passedin andout of thekernelun-
changed,andis not usedin any way. The usageof this
field is entirely applicationdependent,and is provided
as a way to efficiently implementa function dispatch
routine,or otherwiseaddanapplicationidentifier to the



Input flags:

EV ADD Addstheeventto thekqueue

EV ENABLE Permit kevent() to return the
eventif it is triggered.

EV DISABLE Disable the event so kevent()
will not returnit. Thefilter itself is not dis-
abled.

EV DELETE Removes the event from the
kqueue. Eventswhich areattachedto file
descriptorsareautomaticallydeletedwhen
thedescriptoris closed.

EV CLEAR After the event is retrievedby the
user, its stateis reset.This is usefulfor fil-
terswhichreportstatetransitionsinsteadof
thecurrentstate.Notethatsomefiltersmay
automaticallysetthis flag internally.

EV ONESHOT Causestheeventto returnonly
the first occurrenceof the filter beingtrig-
gered. After the user retrieves the event
from thekqueue,it is deleted.

Outputflags:

EV EOF Filters may set this flag to indicate
filter-specificEOFconditions.

EV ERROR If anerroroccurswhenprocessing
thechangelist,this flagwill beset.

Figure2: Flagvaluesfor structkevent

keventstructure.

4.1 Kqueuefilters

Thedesignof thekqueuesystemis basedon thenotion
of filters,which areresponsiblefor determiningwhether
aneventhasoccurredor not, andmayalsorecordextra
informationto bepassedbackto theuser. The interpre-
tationof certainfieldsin thekeventstructuredependson
which filter is beingused. The currentimplementation
comeswith a few generalpurposeevent filters, which
aresuitablefor mostpurposes.Thesefilters include:

EVFILT READ

EVFILT WRITE

EVFILT AIO

EVFILT VNODE

EVFILT PROC

EVFILT SIGNAL

The READ andWRITE filters are intendedto work
on any file descriptor, and the ident field containsthe
descriptornumber. Thesefilters closelymirror the be-
havior of poll() or select(),in that they are intendedto
returnwhenever thereis datareadyto read,or if theap-
plication canwrite without blocking. The kernel func-
tion correspondingto thefilter dependson thedescriptor
type, so the implementationis tailored for the require-
mentsof eachtype of descriptorin use. In general,the
amountof datathat is readyto read(or ableto be writ-
ten) will be returnedin the data field within the kevent
structure,wheretheapplicationis free to usethis infor-
mationin whatever mannerit desires.If theunderlying
descriptorsupportsa conceptof EOF, thentheEV EOF
flagwill besetin theflagsword structureassoonasit is
detected,regardlessof whetherthereis still dataleft for
theapplicationto read.

For example,the readfilter for socket descriptorsis
triggeredas long as there is data in the socket buffer
greaterthan the SO LOWAT mark, or whenthe socket
hasshutdown and is unableto receive any more data.
Thefilter will returnthenumberof bytespendingin the
socketbuffer, aswell assetanEOFflagfor theshutdown
case.Thisprovidesmoreinformationthattheapplication
canusewhile processingtheevent.As EOFis explicitly
returnedwhenthesocket is shutdown, theapplicationno
longerneedsto makeanadditionalcall to read()in order
to discoveranEOFcondition.

A non kqueue-aware application using the asyn-
chronousI/O (aio)facility startsanI/O requestby issuing
aio read()or aio write() Therequestthenproceedsinde-
pendentlyof theapplication,which mustcall aio error()
repeatedlyto checkwhetherthe requesthascompleted,
andtheneventuallycall aio return()to collect the com-
pletionstatusof therequest.TheAIO filter replacesthis
polling modelby allowing theuserto registertheaio re-
questwith a specifiedkqueueat thetime theI/O request
is issued,andan event is returnedunderthe samecon-
ditionswhenaio error()would successfullyreturn.This
allowstheapplicationto issueanaio read()call, proceed
with themaineventloop,andthencall aio return()when
thekeventcorrespondingto theaio is returnedfrom the
kqueue,saving severalsystemcallsin theprocess.

The SIGNAL filter is intendedto work alongsidethe
normalsignalhandlingmachinery, providinganalternate
methodof signaldelivery. The ident field is interpreted
asasignalnumber, andon return,thedatafield contains
a countof how often the signalwassentto the applica-
tion. This filter makesuseof theEV CLEAR flag inter-
nally, by clearingits state(countof signaloccurrence)
aftertheapplicationreceivestheeventnotification.

TheVNODE filter is intendedto allow theuserto reg-
isteraninterestin changesthathappenwithin thefilesys-
tem. Accordingly, the ident field shouldcontaina de-



Input/OutputFlags:

NOTE EXIT Processexited.

NOTE FORK Processcalledfork()

NOTE EXEC Processexecuteda new processvia
execve(2)or similar call.

NOTE TRACK Follow a process across fork()
calls. The parent processwill return with
NOTE TRACK set in the flags field, while the
child processwill returnwith NOTE CHILD set
in fflagsandtheparentPID in data.

OutputFlagsonly:

NOTE CHILD This is the child process of a
TRACKedprocesswhich calledfork().

NOTE TRACKERR Thisflag is returnedif thesys-
tem was unableto attachan event to the child
process,usuallydueto resourcelimitations.

Figure3: Flagsfor EVFILT PROC

scriptorcorrespondingto an openfile or directory. The
fflags field is usedto specify which actionson the de-
scriptor the applicationis interestedin on registration,
anduponreturn,which actionshave occurred.Thepos-
sibleactionsare:

NOTE DELETE

NOTE WRITE

NOTE EXTEND

NOTE ATTRIB

NOTE LINK

NOTE RENAME

Thesecorrespondto theactionsthatthefilesystemper-
forms on the file and thus will not be explainedhere.
ThesenotesmaybeOR-dtogetherin thereturnedkevent,
if multipleactionshaveoccurred.E.g.:afile waswritten,
thenrenamed.

The final generalpurposefilter is the PROC filter,
which detectsprocesschanges.For this filter, the ident
field is interpretedasa processidentifier. This filter can
watchfor severaltypesof events,andthefflagsthatcon-
trol this filter areoutlinedin Figure3.

5 Usageand Examples

Kqueueis designedto reducethe overheadincurredby
poll() and select(),by efficiently notifying the userof

an event that needsattention,while also providing as
muchinformationaboutthateventaspossible.However,
kqueueis not designedto be a drop in replacementfor
poll; in orderto getthegreatestbenefitsfrom thesystem,
existingapplicationswill needto berewrittento takead-
vantageof theuniqueinterfacethatkqueueprovides.

A traditionalapplicationbuilt aroundpoll will have a
singlestructurecontainingall active descriptors,which
is passedto the kernelevery time the applicationsgoes
throughthecentraleventloop. A kqueue-awareapplica-
tion will needto notify thekernelof any changesto the
list of active descriptors,insteadof passingin theentire
list. This canbedoneeitherby calling kevent()for each
updateto the active descriptorlist, or by building up a
list of descriptorchangesandthenpassingthis list to the
kernel the next time the event loop is called. The lat-
ter approachoffersbetterperformance,asit reducesthe
numberof systemcallsmade.

While thepreviousAPI sectionfor kqueuemayappear
tobecomplex atfirst,muchof thecomplexity stemsfrom
the fact that therearemultiple eventsourcesandmulti-
ple filters. A programwhich only wantsREAD/WRITE
eventsis actuallyfairly simple.Exampleson thefollow-
ing pagesillustratehow a programusingpoll() can be
easilyconvertedto usekqueue()andalsopresentsseveral
codefragmentsillustratingtheuseof theotherfilters.

The codein Figure 4 illustratestypical usageof the
poll() systemcall,while thecodein Figure5 is aline-by-
line conversionof the samecodeto usekqueue.While
admittedlythis is a simplifiedexample,themappingbe-
tweenthe two calls is fairly straightforward. The main
stumblingblock to a conversionmay be the lack of a
function equivalentto updatefd, which makeschanges
to thearraycontainingthepollfd or keventstructures.

If the udatafield is initialized to the correctfunction
prior to registeringanew kevent,it is possibleto simplify
thedispatchloopevenmore,asshown in Figure6.

Figure 7 containsa fragmentof codethat illustrates
how to have a signalevent deliveredto the application.
Note the call to signal()which establishesa NULL sig-
nal handler. Prior to this call, the default actionfor the
signal is to terminatethe process. Ignoring the signal
simply meansthatno signalhandlerwill be calledafter
thesignalis deliveredto theprocess.

Figure8 presentscodethatmonitorsa descriptorcor-
respondingto a file on an ufs filesystemfor specified
changes.Note theuseof EV CLEAR, which resetsthe
event after it is returned; without this flag, the event
wouldberepeatedlyreturned.

Thebehavior of thePROCfilter is bestillustratedwith
the examplebelow. A PROC filter may be attachedto
any processin thesystemthat theapplicationcansee,it
isnotlimited to itsdescendants.Thefilter mayattachto a
privilegedprocess;thereareno securityimplications,as



handle_events()
{

int i, n, timeout = TIMEOUT;

n = poll(pfd, nfds, timeout);

if (n <= 0)
goto error_or_timeout;

for (i = 0; n != 0; i++) {
if (pfd[i].revents == 0)

continue;
n--;
if (pfd[i].revents &

(POLLERR | POLLNVAL))
/* error */

if (pfd[i].revents & POLLIN)
readable_fd(pfd[i].fd);

if (pfd[i].revents & POLLOUT)
writeable_fd(pfd[i].fd);

}
...

}

update_fd(int fd, int action,
int events)

{
if (action == ADD) {

pfd[fd].fd = fd;
pfd[fd].events = events;

} else
pfd[fd].fd = -1;

}

Figure4: Originalpoll() code

all informationcanbe obtainedthrough’ps’. The term
’see’ is specificto FreeBSD’s jail code,which isolates
certaingroupsof processesfrom eachother.

There is single notification for each fork(), if the
FORKflag is setin theprocessfilter. If theTRACK flag
is set,thenthefilter actuallycreatesandregistersa new
knote,which is in turnattachedto thenew process.This
new knoteis immediatelyactivated,with theCHILD flag
set.

The fork functionality was addedin order to trace
the process’s execution. For example,supposethat an
EVFILT PROC filter with the flags (FORK, TRACK,
EXEC, EXIT) is registeredfor processA, which then
forks off two children,processesB & C. ProcessC then
immediately forks off anotherprocessD, which calls
exec() to run anotherprogram,which in turn exits. If
theapplicationwasto call kevent()at thispoint, it would
find 4 keventswaiting:

ident: A, fflags: FORK
ident: B, fflags: CHILD data: A
ident: C, fflags: CHILD, FORK data: A
ident: D, fflags: CHILD, EXEC, EXIT data: C

The knoteattachedto the child is responsiblefor re-

handle_events()
{

int i, n;
struct timespec timeout =

{ TMOUT_SEC, TMOUT_NSEC };

n = kevent(kq, ch, nchanges,
ev, nevents, &timeout);

if (n <= 0)
goto error_or_timeout;

for (i = 0; i < n; i++) {

if (ev[i].flags & EV_ERROR)
/* error */

if (ev[i].filter == EVFILT_READ)
readable_fd(ev[i].ident);

if (ev[i].filter == EVFILT_WRITE)
writeable_fd(ev[i].ident);

}
...

}

update_fd(int fd, int action,
int filter)

{
EV_SET(&ch[nchanges], fd, filter,

action == ADD ? EV_ADD
: EV_DELETE,

0, 0, 0);
nchanges++;

}

Figure5: Direct conversionto kevent()

turning mappingbetweenthe parentand child process
ids.

6 Implementation

Thefocusof activity in theKqueuesystemcenterson a
datastructurecalleda knote,which directly corresponds
to thekeventstructureseenby theapplication.Theknote
tiestogetherthedatastructurebeingmonitored,thefilter
usedto evaluatetheactivity, thekqueuethatit is on,and
links to otherknotes.Theothermaindatastructureis the
kqueueitself,whichservesatwofold purpose:to provide
a queuecontainingknoteswhich arereadyto deliver to
the application,and to keeptrack of the knoteswhich
correspondto the keventsthe applicationhasregistered
its interestin. Thesegoalsareaccomplishedby theuse
of threesubdatastructuresattachedto thekqueue:

1. A list for the queueitself, containingknotesthat
havepreviouslybeenmarkedactive.

2. A small hashtable usedto look up knoteswhose
identfield doesnot correspondto a descriptor.



int i, n;
struct timespec timeout =

{ TMOUT_SEC, TMOUT_NSEC };
void (* fcn)(struct kevent *);

n = kevent(kq, ch, nchanges,
ev, nevents, &timeout);

if (n <= 0)
goto error_or_timeout;

for (i = 0; i < n; i++) {
if (ev[i].flags & EV_ERROR)

/* error */
fcn = ev[i].udata;
fcn(&ev[i]);

}

Figure6: Usingudatafor directfunctiondispatch

struct kevent ev;
struct timespec nullts = { 0, 0 };

EV_SET(&ev, SIGHUP, EVFILT_SIGNAL,
EV_ADD | EV_ENABLE, 0, 0, 0);

kevent(kq, &ev, 1, NULL, 0, &nullts);

signal(SIGHUP, SIG_IGN);
for (;;) {

n = kevent(kq, NULL, 0, &ev, 1, NULL);
if (n > 0)

printf("signal %d delivered"
" %d times\n",
ev.ident, ev.data);

}

Figure7: Usingkeventfor signaldelivery

struct kevent ev;
struct timespec nullts = { 0, 0 };

EV_SET(&ev, fd, EVFILT_VNODE,
EV_ADD | EV_ENABLE | EV_CLEAR,
NOTE_RENAME | NOTE_WRITE |
NOTE_DELETE | NOTE_ATTRIB, 0, 0);

kevent(kq, &ev, 1, NULL, 0, &nullts);

for (;;) {
n = kevent(kq, NULL, 0, &ev, 1, NULL);

if (n > 0) {
printf("The file was");
if (ev.fflags & NOTE_RENAME)

printf(" renamed");
if (ev.fflags & NOTE_WRITE)

printf(" written");
if (ev.fflags & NOTE_DELETE)

printf(" deleted");
if (ev.fflags & NOTE_ATTRIB)

printf(" chmod/chowned");
printf("\n");

}

Figure8: Usingkeventto watchfor file changes

3. A linear arrayof singly linked lists indexedby de-
scriptor, whichis allocatedin exactlythesamefash-
ion asaprocess’openfile table.

The hashtableandarrayarelazily allocated,andthe
arrayexpandsasneededaccordingto thelargestfile de-
scriptor seen. The kqueuemust recordall knotesthat
have beenregisteredwith it in order to destroy them
when the kq is closedby the application. In addition,
thedescriptorarrayis usedwhentheapplicationclosesa
specificfile descriptor, in orderto deleteany knotescor-
respondingwith thedescriptor. An exampleof the links
betweenthedatastructuresis show below.

6.1 Registration

Initially, theapplicationcallskqueue()to allocatea new
kqueue(henceforthreferredto askq). This involvesallo-
cationof a new descriptor, a structkqueue,andentryfor
this structurein the openfile table. Spacefor the array
andhashtablesarenot initializedat this time.

The application then calls kevent(), passing in a
pointer to the changelistthat should be applied. The
kevents in the changelistare copied into the kernel in
chunks,andtheneachoneis passedto kqueueregister()
for entryinto thekq. Thekqueueregister()functionuses
the �+���,�%������� �)!-�#�%$.& pair to lookup a matchingknote
attachedto thekq. If no knoteis found,a new onemay
beallocatedif theEV ADD flag is set.Theknoteis ini-
tializedfrom thekeventstructurepassedin, thenthefil-
ter attachroutine(detailedbelow) is calledto attachthe
knoteto the eventsource.Afterwards,the new knoteis
linkedto eitherthearrayor hashtablewithin thekq. If an
error occurswhile processingthe changelist,the kevent
that causedthe error is copiedover to the eventlist for
returnto theapplication.Only aftertheentirechangelist
is processeddoesis kqueuescan()calledin orderto de-
queueeventsfor the application. The operationof this
routineis detailedin theDeliverysection.

6.2 Filters

Each filter provides a vector consistingof three func-
tions: /%0����#0�1324�5���%�#0�1�26��� �)!-�#�%$,7 . The attachroutine is
responsiblefor attachingtheknoteto a linkedlist within
thestructurewhich receivestheeventsbeingmonitored,
while thedetachroutineis usedto removetheknotethis
list. Theseroutinesareneededbecausethe locking re-
quirementsandlocationof theattachmentpoint aredif-
ferentfor eachdatastructure.

The filter routine is calledwhenthereis any activity
from the event source,and is responsiblefor deciding
whethertheactivity satisfiesaconditionthatwouldcause
aneventto bereportedto theapplication.Thespecifics



kq B

sockbuf

sockbuf

socket

kq A

knote

knote knote

knotevnode

Figure9: Two kqueues,theirdescriptorarrays,andactive lists. Notethatkq A hastwo knotesqueuedin its active list,
while kq B hasnone.Thesocket hasa klist for eachsockbuf, andasshown, knoteson a klist maybelongto different
kqueues.

of the conditionareencodedwithin the filter, and thus
aredependenton which filter is used,but normallycor-
respondto specificstates,suchaswhetherthereis data
in thebuffer, or if anerrorhasbeenobserved. Thefilter
mustreturna booleanvalueindicatingwhetheranevent
shouldbe deliveredto the application. It may alsoper-
form some“side effects” if it choosesby manipulating
thefflag anddatavalueswithin theknote.Thesesideef-
fects may rangefrom merely recordingthe numberof
times the filter routine was called, or having the filter
copy extra informationout to userspace.

All threeroutinescompletelyencapsulatetheinforma-
tion requiredto manipulatethe event source. No other
codein thekqueuesystemis awareof wheretheactivity
comesfrom or whataneventrepresents,otherthanask-
ing the filter whetherthis knote shouldbe activatedor
not. Thissimpleencapsulationis whatallowsthesystem
to be extendedto otherevent sourcessimply by adding
new filters.

6.3 Activity on Event Source

Whenactivity occurs(apacketarrives,afile is modified,
a processexits), a datastructureis typically modifiedin
response.Within the codepath wherethis happens,a
hookis placedfor thekqueuesystem,this takestheform
of a knote()call. This functiontakesa singly linkedlist
of knotes(unimaginatively referredto hereasa klist) as
an argument,along with an optional hint for the filter.
Theknote()functionthenwalkstheklist makingcallsto
thefilter routinefor eachknote.As theknotecontainsa
referenceto thedatastructurethatit is attachedto, thefil-
ter maychooseto examinethedatastructurein deciding

whetheraneventshouldbereported.Thehint is usedto
passin additionalinformation,whichmaynotbepresent
in thedatastructurethefilter examines.

If thefilter decidestheeventshouldbereturned,it re-
turnsa truthvalueandtheknote()routinelinks theknote
onto the tail end of the active list in its corresponding
kqueue,for theapplicationto retrieve. If theknoteis al-
readyon theactive list, no actionis taken,but thecall to
thefilter occursin orderto provideanopportunityfor the
filter to recordtheactivity.

6.4 Delivery

Whenkqueuescan()is called,it appendsaspecialknote
marker at the end of the active list, which boundsthe
amountof work thatshouldbedone;if thismarker is de-
queuedwhile walking the list, it indicatesthat the scan
is complete. A knote is then removed from the active
list, andtheflagsfield is checkedfor theEV ONESHOT
flag. If this is not set,thenthefilter is calledagainwith
a queryhint; this givesthefilter a chanceto confirmthat
theeventis still valid, andinsurescorrectness.Theratio-
nalefor this is the casewheredataarrivesfor a socket,
which causestheknoteto bequeued,but theapplication
happensto call read()andempty the socket buffer be-
fore calling kevent. If the knotewasstill queued,then
aneventwouldbereturnedtelling theapplicationto read
anemptybuffer. Checkingwith thefilter at thetime the
event is dequeued,assuresus that the informationis up
to date. It may also be worth noting that if a pending
eventis deactivatedvia EV DISABLE, its removal from
theactivequeueis delayeduntil this point.

Informationfromtheknoteis thencopiedintoakevent



structurewithin the event list for return to the applica-
tion. If EV ONESHOT is set,thenthe knoteis deleted
and removed from the kq. Otherwiseif the filter indi-
catesthat theevent is still active andEV CLEAR is not
set,thentheknoteis placedbackat thetail of theactive
list. Theknotewill not beexaminedagainuntil thenext
scan,sinceit is now behindthemarkerwhichwill termi-
natethescan.Operationcontinuesuntil eitherthemarker
is dequeued,or thereis no morespacein theeventlist,at
which timethemarker is forcibly dequeued,andtherou-
tine returns.

6.5 MiscellaneousNotes

Sincean ordinaryfile descriptorreferencesthe kqueue,
it cantake part in any operationsthatnormallycanper-
formed on a descriptor. The applicationmay select(),
poll(), close(), or even createa kevent referencinga
kqueue;in thesecases,aneventis deliveredwhenthereis
aknotequeuedontheactivelist. Theability to monitora
kqueuefrom anotherkqueueallowsanapplicationto im-
plementa priority hierarchyby choosingwhich kqueue
to servicefirst.

Thecurrentimplementationdoesnot passkqueuede-
scriptorsto childrenunlessthe new child will shareits
file tablewith theparentvia rfork(RFFDG).Thismaybe
viewedasan implementationdetail; fixing this involves
makinga copy of all knotestructuresat fork() time, or
markingthemascopy on write.

Knotesareattachedto thedatastructurethey aremon-
itoring via a linkedlist, contrastingwith thebehavior of
poll() andselect(),which recorda singlepid within the
selinfo structure.While this may be a naturaloutcome
from thewayknotesareimplemented,it alsomeansthat
thekqueuesystemis not susceptibleto selectcollisions.
As eachknoteis queuedin theactive list, only processes
sleepingon thatkqueuearewokenup.

As hints arepassedto all filters on a klist, regardless
of type,whenasingleklist containsmultipleeventtypes,
caremustbetakento insurethat thehint uniquelyiden-
tifies the activity to the filters. An exampleof this may
be seenin the PROC andSIGNAL filters. Theseshare
the sameklist, hungoff of the processstructure,where
thehint valueis usedto determinewhethertheactivity is
signalor processrelated.

Eachkevent that is submittedto the systemis copied
into kernel space,and events that are dequeuedare
copiedback out to the eventlist in userspace. While
addingslightly morecopy overhead,this approachwas
preferredoveranAIO stylesolutionwherethekerneldi-
rectly updatesthestatusof acontrolblock thatis keptin
userspace.The rationalefor this was that it would be
easierfor the userto find andresolve bugsin theappli-
cationif thekernelis not allowedto write directly to lo-

cationsin userspacewhich theusercouldpossiblyhave
freedandreusedby accident.Thishasturnedout to have
anadditionalbenefit,asapplicationsmaychooseto “fire
andforget” by submittinganeventto thekernelandnot
keepingadditionalstatearound.

7 Performance

Measurementsfor performancenumbersin this section
were taken on a Dell PowerEdge2300 equippedwith
anIntel Pentium-III600MhzCPUand512MB memory,
runningFreeBSD4.3-RC.

The first experimentwas to determinethe costsas-
sociatedwith the kqueuesystemitself. For this a pro-
gram similar to lmbench [6] was used. The com-
mand under test was executedin a loop, with timing
measurementstaken outside the loop, and then aver-
agedby the numberof loops made. Times were mea-
suredusingtheclock gettime(CLOCKREALTIME) fa-
cility providedby FreeBSD,which on the platform un-
der testhasa resolutionof 838 nanoseconds.Time re-
quired to executethe loop itself and the systemcalls
to clock gettime()werewasmeasuredandthe reported
valuesfor the final timeswereadjustedto eliminatethe
overhead.Eachtestwasrun 1024times,with the first
testnot includedin the measurements,in orderto elim-
inateadversecold cacheeffects. Themeanvalueof the
testsweretaken; in all cases,thedifferencebetweenthe
meanandmedianis lessthanonestandarddeviation.

In thefirst experiment,avaryingnumberof socketsor
fileswerecreated,andthenpassedto keventor poll. The
time requiredfor thecall to completewasrecorded,and
no activity waspendingon any of the descriptors.For
bothsystemcalls, this measurestheoverheadneededto
copy the descriptorsets,and queryeachdescriptorfor
activity. For the kevent systemcall, this also reflects
the overheadneededto establishthe internalknotedata
structure.

As shown in Figure10, it takestwice aslong to adda
new knoteto a kqueueasopposedto calling poll. This
impliesthatfor applicationsthatpoll adescriptorexactly
once,kevent will not provide a performancegain, due
to the amountof overheadrequiredto setup the knote
linkages. The differing resultsbetweenthe socket and
file descriptorsreflectsthe differentcodepathsusedto
checkactivity on differentfile typesin thesystem.

After theinitial EV ADD call to addthedescriptorsto
thekqueue,the time requiredto checkthesedescriptors
wasrecorded;this is shown in the ”kq descriptor”line
in thegraphabove. In this case,therewasno difference
betweenfile types.In all cases,thetimeis constant,since
thereis no activity on any of theregistereddescriptors.

Thisprovidesalowerboundonthetimerequiredfor a
givenkeventcall, regardlessof thenumberof descriptors



-200

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

T
im

e 
(m

ill
is

ec
on

ds
)

Number of descriptors

"kq_register_sockets"
"kq_register_files"

"poll_sockets"
"poll_files"

"kq_descriptors"

Figure10: Time neededfor initial kqueuecall. Notey-
axisorigin is shiftedin orderto betterseekqueueresults.

thatarebeingmonitored.

The main cost associatedwith the kevent call is the
processof registeringanew knotewith thesystem;how-
ever, oncethis is done,thereis negligible costfor moni-
toring thedescriptorif it is inactive. This contrastswith
poll, which incurs the samecost regardlessof whether
thedescriptoris activeor inactive.

Theupperboundon thetime neededfor a keventcall
afterthedescriptorsareregisteredwould beif everysin-
gle descriptorwasactive. In this casethe kernelwould
have to do the maximumamountof work by checking
eachdescriptor’sfilter for validity, andthenreturningev-
ery kevent in the kqueueto theuser. The resultsof this
testareshown in Figure11, with the poll valuesrepro-
ducedagainfor comparision.

In thisgraph,thelinesfor kqueueareworstcasetimes;
in which every single descriptoris found to be active.
The bestcasetime is nearzero,asgiven by the earlier
”kq descriptor”line. In an actualworkload, the actual
timeis somewhereinbetween,but in eithercase,thetotal
time takenis lessthanthatfor poll().

As evidencedby thetwo graphsabove, theamountof
timesavedbykqueueoverpoll dependsonthenumberof
timesthata descriptoris monitoredfor anevent,andthe
amountof activity that is presenton a descriptor. Figure
12 shows accumulatedtime requiredto checka single
descriptorfor bothkqueueandpoll. Thepoll line is con-
stant,while thetwo kqueuelinesgive thebestandworst
casescenariosfor a descriptor. Timeshereareaveraged
from the100file descriptorcasein thepreviousgraphs.
This graphshows that despitea higherstartuptime for
kqueue,unlessthedescriptoris polledlessthan4 times,
kqueuehasa loweroverall costthanpoll.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

T
im

e 
(m

ill
is

ec
on

ds
)

Number of descriptors

"poll_sockets"
"kq_active_sockets"

"poll_files"
"kq_active_files"

Figure11: Timerequiredwhenall descriptorsareactive.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

A
cc

um
ul

at
ed

 T
im

e 
(m

ic
ro

se
co

nd
s)

Number of system calls

"poll_costs"
"kq_costs_active"

"kq_costs_inactive"

Figure12: Accumulatedtime for kqueuevs poll

7.1 Indi vidual operations

The stateof kqueueis maintainedby using the action
field in thekeventto alterthestateof theknotes.Eachof
theseactionstakesa differentamountof amountof time
to perform,asillustratedby Figure13. Theseoperations
areperformedon socket descriptors;the graphsfor file
descriptors(ttys) aresimilar. While enable/disablehave
a lower costthanadd/delete,recall that this only affects
returningthekeventto theuser;thefilter associatedwith
theknotewill still beexecuted.

7.2 Application level benchmarks

WebProxy Cache

Two real-world applicationswere modified to use the
kqueuesystemcall; a commercialweb cachingproxy
server, andthe thttpd [9] Web server. Both of theseap-
plicationswererunon theplatformdescribedearlier.

The client machinefor runningnetwork testswasan
Alpha 264DP, usinga single21264EV6 666Mhz pro-



0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

T
im

e 
(m

ill
is

ec
on

ds
)

Number of descriptors

"kq_add"
"kq_delete"

"kq_enable"
"kq_disable"

Figure13: Timerequiredfor eachkqueueoperation.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

%
 C

P
U

 ti
m

e8

Number of cold connections

"select_time_vs_cold_conn"
"kevent_time_vs_cold_conn"

Figure14: KernelCPUtimeconsumedby systemcall.

cessor, and512MB memory, runningFreeBSD4.3-RC.
Bothmachineswereequippedwith aNetgearGA620Gi-
gabit Ethernetcard,andconnectedvia a CiscoCatalyst
3500XL Gigabitswitch.No othertraffic waspresenton
theswitchat thetime of thetests.For thewebcache,all
fileswereloadedinto thecachefrom awebserverbefore
startingthetest.

In order to generatea workload for the web proxy
serverwith theequipmentavailable,thehttp load[8] tool
wasused.This wasconfiguredto requestURLs from a
setof 10001KB and101MB cacheddocumentsfrom the
proxy, while maintaining100parallelconnections.An-
otherprogramwasusedto keepavaryingnumberof idle
connectionsopento the server. This approachfollows
earlierresearchthatshows thatwebservershavea small
setof activeconnections,anda largernumberof inactive
connections[2]. Performancedatafor thetestswerecol-
lectedontheserversystemby runningthekernelprofiler
(kgmon)while thecachewasunderload.

Figure 14 shows the amountof CPU time that each
systemcall (andits directdescendants)useasthe num-

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f C
P

U
 id

le
 ti

m
e

8

Number of cold connections

"select_idle_time"
"kq_idle_time"

Figure15: Amountof idle time remaining.

berof active connectionsis heldat 100,andthenumber
of coldconnectionsvaries.Observingthegraph,seethat
thekqueuetimesareconstantregardlessof thenumberof
inactive connections,asexpectedfrom themicrobench-
marks.Theselectbasedapproachstartsnearingthesat-
urationpoint astheamountof idle CPUtime decreases.
Figure15 shows a graphof idle CPUtime, asmeasured
by vmstat,andit canseenthat the systemis essentially
out of resourcesby thetime thereare2000connections.

thttpd Web Server

The thttpd Web Server [9] wasmodifiedto addkqueue
supportto its fdwatchdescriptormanagementcode,and
theperformanceof theresultingserverwascomparedto
theoriginal code.

For benchmarkingtheserver, thehttperf [7] measure-
mentpackagewasused. The sizeof the FD SETSIZE
arraywasincreasedin orderto supportmorethan1024
opendescriptors.The valueof net.inet.tcp.mslon both
client andserver machineswasdescreasedfrom 30 sec-
ondsto 5 secondsin order to recycle the network port
spaceat a higherrate. After the server wesstarted,and
beforeany measurementswere taken, a single dry run
wasdoneusingthemaximumnumberof idle onnections
betweentheclietn andserver. Doing this allows theker-
nelportionof thewebserverprocessto preallocatespace
for the openfile descriptorkqueuedescriptortables,as
well asallowing the userportionof the processto allo-
catethespaceneededfor thedatastructures.If this was
not done,the responserateasobserved from the client
variesastheprocessattemptsto allocatememory.

The offered load from client using httperf was kept
constantat 500 requestsper secondfor this test,while
thenumberof idle connectionsopenedwith idletimewas
varied.Theresultof thetestis thereply timeasreported
by httperf. The reply ratefor all testswasequalto the
requestrate,while the numberof errorswasnegligible



0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

9

Number of Idle Connections

"poll"
"kqueue"

Figure16: Responsetime from httperf

( �(: in all cases).
The idle time on the server machinewas monitored

during the test using vmstat. The unmodified thttpd
server runsout of cpuwhenthenumberof idle connec-
tions is around600, while the modifiedserver still has
approximately48% idle time with 10,000idle connec-
tions.

8 RelatedWork

Thissectionpresentssomeof theotherwork donein this
area.

POSIX signalqueues

POSIXsignalqueuesarepartof theSingleUnix Speci-
fication [5], andallow signalsto bequeuedfor delivery
to an application,along with someadditional informa-
tion. For every event thatshouldbedeliveredto theap-
plication,a signal(typically SIGIO) is generated,anda
structurecontainingthe file descriptoris allocatedand
placedon the queuefor the signal handlerto retrieve.
No attemptateventaggregationis performed,sothereis
no fixedboundon the queuelengthfor returnedevents.
Most implementationssilently boundthe queuelength
to afixedsize,droppingeventswhenthequeuebecomes
too large.Thestructureallocationis performedwhenthe
event is delivered,openingup the possibility of losing
eventsduringa resourceshortage.

Thesignalqueuesarestateless,sotheapplicationmust
handlethe bookkeepingrequiredto determinewhether
thereis residualinformation left from the initial event.
The applicationmust also be preparedto handlestale
eventsaswell. As an example,considerwhat happens
whena packet arrives,causinganevent to beplacedon
a signalqueue,andthendequeuedby thesignalhandler.
Beforeany additionalprocessingcanhappen,a second

packet arrivesand a secondevent is in turn placedon
the signal queue. The applicationmay, in the course
of processingthe first event, closethe descriptorcorre-
spondingto thenetwork channelthat thepacketsareas-
sociatedwith. Whenthe secondevent is retrieved from
thesignalqueue,it is now “stale” in thesensethat it no
longer correspondsto an openfile descriptor. What is
worse,the descriptormay have beenreusedfor another
openfile, resultingin a falsereportingof activity on the
new descriptor. A further drawbackto the signalqueue
approachis thattheuseof signalsasanotificationmech-
anismprecludeshaving multiple eventhandlers,making
it unsuitablefor usein library code.

get next event

This proposedAPI by Banga, Mogul and Druschel
[2] motivated the author to implement systemunder
FreeBSDthat worked in a similar fashion,using their
conceptof hinting. Thepracticalexperiencegainedfrom
realworld usageof anapplicationutilizing thisapproach
inspiredtheconceptof kqueue.

While the original systemdescribedby Banga,et.al.,
performsevent coalescing,it also suffers from “stale”
events, in the samefashionof POSIX signal queues.
Their implementationis restrictedto socket descriptors,
andalsousesalist of fixedsizeto holdhints,falling back
to thebehavior of a normalselect()uponlist overflow.

SGI’s /dev/imon

/dev/imon [3] is an inode monitor, and where events
within the filesystemaresentback to user-space.This
is theonly otherinterfacethattheauthoris awareof that
is capableof performingsimilar operationsasthe VN-
ODE filter. However, only a singleprocesscanreadthe
device nodeat once;SGI handlesthis by creatinga dae-
monprocesscalledfmonthattheapplicationmaycontact
to requestinformationfrom.

Sun’s /dev/poll

This system[4] appearsto comeclosestto the design
outlinedin this paper, but hassomelimitations ascom-
paredto kqueue.Applicationsareableto open/dev/poll
to obtaina filedescriptorthat behavessimilarly to a kq
descriptor. Eventsarepassedto thekernelby performing
awrite()onthedescriptor, andarereadbackviaanioctl()
call. The returnedinformation is limited to an revent
field, similarly to that found in poll(), andthe interface
restrictedto sockets; it cannothandleFIFO descriptors
or othereventsources(signals,filesystemevents).

The interfacealsodoesnot automaticallyhandlethe
casewherea descriptoris closedby theapplication,but



insteadkeepsreturningPOLLNVAL for that descriptor
until removedfrom the interestsetor reusedby the ap-
plication.

The descriptorobtainedby opening/dev/poll cannot
in turn be selectedon, precludingconstructionof hier-
archicalor prioritizedqueues.Thereis no equivalentto
kqueue’sfilters for extendingthebehavior of thesystem,
nor supportfor direct function dispatchasthereis with
kqueue.

9 Conclusion

Applicationshandlinga large numberof eventsarede-
pendenton theefficiency of eventnotificationanddeliv-
ery. This paperhaspresentedthe designcriteria for a
genericandscalableeventnotificationfacility, aswell as
analternateAPI. ThisAPI wasimplementedin FreeBSD
andcommittedto themainCVStreein April 2000.

Overall, thesystemperformsto expectations,andap-
plicationswhich previously foundthatselector poll was
a bottleneckhave seenperformancegains from using
kqueue. The authoris awareof the systembeingused
in several major applicationssuchas webservers, web
proxyservers,irc daemons,netnewstransports,andmail
servers,to namea few.

The implementationdescribedherehasbeenadopted
by OpenBSD,andis in theprocessof beingbroughtinto
NetBSD as well, so the API is not limited to a single
operatingsystem. While the measurementsin this pa-
per have concentratedprimarily on the socket descrip-
tors,otherfilters alsoprovideperformancegains.

The “tail -f ” commandin FreeBSDwas historically
implementedby stat’ingthefile every ;=<?> secondin or-
derto seeif thefile hadchanged.Replacingthis polling
approachwith a kq VNODE filter provides the same
functionality with less overhead,for thoseunderlying
filesystemsthatsupportkqueueeventnotification.

The AIO filter is usedto notify the applicationwhen
anAIO requestis completed,enablingthemaindispatch
loop to besimplified to a singlekeventcall insteadof a
combinationof poll, aio error, andaio suspendcalls.

TheDNSresolverlibrary routines(res *) usedselect()
internallyto orderto wait for a responsefrom thename-
server. On theFreeBSDproject’s heavily loadede-mail
exploderwhichusespostfixfor mail delivery, thesystem
wasseeinganextremelyhighnumberof selectcollisions,
which causesevery processusingselect()to be woken
up. Changingthe resolver library to usekqueuewasa
successfulexampleof usingaprivatekqueuewithin a li-
braryroutine,andalsoresultedin aperformancegainby
eliminatingtheselectcollisions.

The author is not aware of any other UNIX system
which is capableof handlingmultiple eventsources,nor
one that can be trivially extendedto handleadditional

sources.Sincetheoriginal implementationwasreleased,
the systemhasbeenextendeddown to the device layer,
andnow is capableof handlingdevice-specificeventsas
well. A device managerapplicationis plannedfor this
capability, wheretheuserisnotifiedof any changein hot-
swappabledevicesin thesystem.Anotherfilter thatis in
theprocessof beingaddedis a TIMER filter which pro-
vides the applicationwith asmany oneshotor periodic
timersasneeded.Additionally, a high performanceker-
nel audit trail facility maybeimplementedwith kqueue,
by having the user use a kqueuefilter to selectively
choosewhich auditingeventsshouldberecorded.

References

[1] BANGA , G., AND MOGUL , J. C. Scalableker-
nel performancefor Internetserversunderrealistic
loads.In Proceedingsof the1998USENIXAnnual
TechnicalConference(New Orleans,LA, 1998).

[2] BANGA , G., MOGUL , J. C., AND DRUSCHEL , P.
A scalableandexplicit event delivery mechanism
for UNIX. In USENIXAnnualTechnical Confer-
ence(1999),pp.253–265.

[3] /dev/imon. http://techpubs.sgi.com/
library/tpl/cgi-bin/getdoc.cgi?
coll=0650&db=man%&fname=/usr/
share/catman/a_man/cat7/imon.z.

[4] /dev/poll. http://docs.sun.com/ab2/
coll.40.6/REFMAN7/@Ab2PageView/
55123.

[5] GROUP, T. Single unix specification,
1997. http://www.opengroup.org/
online-pubs?DOC=007908799.

[6] MCVOY, L . W., AND STAELIN, C. lm-
bench: Portabletools for performanceanalysis.
In USENIXAnnual Technical Conference(1996),
pp.279–294.

[7] MOSBERGER, D., AND JIN, T. httperf: A tool for
measuringwebserverperformance.In First Work-
shopon InternetServerPerformance(June1998),
ACM, pp.59—67.

[8] POSKANZER, J. http load. http://www.
acme.com/software/http_load/.

[9] POSKANZER, J. thttpd. http://www.acme.
com/software/thttpd/.

[10] PROVOS, N., AND LEVER, C. Scalablenetwork
i/o in linux, 2000.


