
441: Programming Languages

MinML: A MINiMaL Functional

Language

Dynamic Semantics

David Walker



Dynamic Semantics

The dynamic semantics of a language spec-

ifies how to execute programs written in that

language.

Two general approaches:

1. Machine-based: describe execution in terms

of a mapping of the language onto an (ab-

stract or concrete) machine.

2. Language-based: describe execution en-

tirely in terms of the language itself.

1



Machine-Based Models

Historically, machine-based approaches have dom-

inated.

• Assembly languages.

• Systems languages such as C and its deriva-

tives.

Such languages are sometimes called concrete

languages because of their close association

with the machine.

2



Machine-Based Models

Advantages:

• Specifies meanings of data types in terms

of machine-level concepts.

• Facilitates low-level programming, e.g.writing

device drivers.

• Supports low-level “hacks” based on the

quirks of the target machine.

3



Machine-Based Models

Disadvantages:

• Requires you to understand how a language

is compiled.

• Inhibits portability.

• Run-time errors (such as “bus error”) can-

not be understood in terms of the program,

only in terms of how it is compiled an ex-

ecuted.

4



Language-Based Models

Define execution behavior entirely at the level

of the language itself.

“Computation by calculation.”

No need to specify implementation details.

Such languages are sometimes called abstract

languages because they abstract from machine-

specific details.

5



Language-Based Models

Advantages:

• Inherently portable across platforms.

• Semantics is defined entirely in terms of

concepts within the language.

• No mysterious (implementation-specific) er-

rors to track down.

6



Language-Based Models

Disadvantages:

• Cannot take advantage of machine-specific

details.

• Can be more difficult to understand com-

plexity (time and space usage).

7



Machine- vs.Language-Based Models

Language-based models will dominate in the

future.

• Low-level programming is a vanishingly small

percentage of the mix.

• Emphasis on bit-level efficiency is almost

always misplaced.

• Portability matters much more than effi-

ciency.

8



Dynamic Semantics of MinML

We’ll define the dynamic semantics of MinML

using a technique called structured opera-

tional semantics (SOS).

• Define a transition relation p 7→ p′ be-

tween programs.

• A transition consists of execution of a sin-

gle instruction.

• Rules determine which instruction to exe-

cute next.

• There are no transitions from values.

9



Values

The set of values is inductively defined by the

following rules:

x var
x value

n number
n value

true value false value

τ1 type τ2 type f var x var e expr
fun f (x:τ1):τ2 = e value

10



Primitive Instructions

First, we define the primitive instructions of

MinML. These are the atomic transition steps.

• Primitive operations on numbers.

• Conditional branch when the test is either

true or false.

• Application of a recursive function to an

argument value.

11



Primitive Instructions

Addition of two numbers:

(n = n1 + n2)
+(n1, n2) 7→ n

Equality test:

=(n1, n2) 7→
{

true n1 = n2
false n1 6= n2

12



Primitive Instructions

Conditional branch:

ifτ true then e1 else e2 fi 7→ e1

ifτ false then e1 else e2 fi 7→ e2

13



Primitive Instructions

Application of a recursive function:

v value v1 value (v = fun f (x:τ1):τ2 = e)
apply(v, v1) 7→ {v, v1/f, x}e

NB: we substitute the entire function expres-

sion for f in e!

This “unrolls” the recursion by ensuring that

f refers to the function itself.

14



Primitive Instructions

The rule for function application “unrolls the

recursion” during application.

• Substitute the argument value for the func-

tion’s parameter in its body.

• Substitute the function itself for the “self”

parameter of the function in its body.

This ensures that calls to f (it’s “local name”)

in the body are applications of f (the function

itself).

15



Search Rules

Second, we specify the next instruction to ex-

ecute by a set of search rules.

These rules specify the order of evaluation

of MinML expressions: which instruction is to

be executed next?

Assembly language programs are linear sequences

of instructions; for these languages a simple

counter (the PC) determines the next instruc-

tion.

For more structured languages such as MinML

more complex rules are required.

16



Search Rules

The arguments of the primitive operations are

evaluated left-to-right:

e1 7→ e′
1

+(e1, e2) 7→ +(e′
1, e2)

v1 value e2 7→ e′
2

+(v1, e2) 7→ +(v1, e′
2)

17



Search Rules

For conditionals we evaluate the test expres-

sion:

e 7→ e′

ifτ e then e1 else e2 fi
7→

ifτ e′ then e1 else e2 fi

18



Search Rules

Applications are evaluated left-to-right: first

the function, then the argument.

e1 7→ e′
1

apply(e1, e2) 7→ apply(e′
1, e2)

v1 value e2 7→ e′
2

apply(v1, e2) 7→ apply(v1, e′
2)

19



Multi-step Evaluation

The relation e 7→∗ e′ is inductively defined by

the following rules:

e 7→∗ e
e 7→ e′ e′ 7→∗ e′′

e 7→∗ e′′

That is, e 7→∗ e′ iff e = e0 7→ e1 7→ · · · 7→ en = e′

for some n ≥ 0.

20



Example Execution

Suppose that f is the expression

fun f(n:int):int is if n=0 then 1 else n*f(n-1) end

Consider the evaluation of apply(f, 3).

This a primitive instruction, which we execute:

apply(f, 3) 7→ if 3=0 then 1 else 3*f(3-1)

We have substituted 3 for n and f for f in the

body of the function.

21



Example Execution

We now evaluate the test and branch:

if 3=0 then 1 else 3*f(3-1) 7→ if false then 1 else 3*f(3-1)
7→ 3*f(3-1)
7→ 3*f(2)
7→ 3*(if 2=0 then 1 else 2*f(2-1))
7→∗ 3*2*f(1)
7→∗ 3*2*1*f(0)
7→∗ 3*2*1*1
7→∗ 6

22



Induction on Evaluation

Since one-step evaluation is inductively defined,

there is an associated principle of induction,

called induction on evaluation.

To prove that e 7→ e′ implies P (e, e′) for some

property P , it suffices to prove that P is closed

under the rules of evaluation.

1. P (e, e′) holds for each of the instruction

axioms.

2. Assuming P holds for each of the premises

of a search rule, show that it holds for the

conclusion as well.

23



Induction on Evaluation

Similarly, multi-step evaluation is inductively

defined, and hence there is an associated prin-

ciple of induction, called induction on the

steps of evaluation.

To show that e 7→∗ e′ implies P (e, e′), it suffices

to show

1. If P (e, e), i.e.that P is reflexive.

2. If e 7→ e′ 7→∗ e′′ and P (e′, e′′), then P (e, e′′).
This is called closure under reverse eval-

uation.

24



Elementary Properties of Evaluation

Proposition 1 (Values Irreducible)

If v value then there is no e such that v 7→ e

(i.e., v 67→).

Proof: By inspection of the rules.

1. No instruction is a value.

2. No search rule applies to a value.

�

25



Elementary Properties of Evaluation

Proposition 2 (Determinacy)

For every e there exists at most one e′ such

that e 7→ e′.

Proof: By induction on the structure of e,

making use of the irreducibility of values to

handle apparent overlapping cases. For exam-

ple, the first application rule can apply only if

the first argument is not a value, by the pre-

vious proposition. �

26



Elementary Properties of Evaluation

Every expression has at most one value.

Corollary 3 (Determinacy of Values)

For any e there exists at most one v such that

e 7→∗ v.

In other words, the relation 7→∗ is a partial

function.

27



Stuck States

Not every irreducible expression is a value!

if 7 then 1 else 2 67→

true+false 67→

0(1) 67→

Observe that all are ill-typed.

An expression e that is not a value, but for

which there exists no e′ such that e 7→ e′ is said

to be stuck.

Safety: all stuck expressions are ill-typed. Equiv-

alently, well-typed expressions do not get stuck.

28



Summary

MinML is a language-based model of compu-

tation.

• Evaluation is defined on the expressions

themselves.

• No mention of a mapping onto a machine.

29



Summary

The dynamic semantics of MinML is given us-

ing structured operational semantics.

• Rules for primitive instructions.

• Rules for determining the next instruction.

30


