
Lecture 5 - Length Extension, CPA Security

Boaz Barak

September 29, 2005

Increasing the output length Our the PRG axiom only guaranteed us a pseudorandom gener-
ator with output m larger than n. As far as we know, it may be that m = n + 1. It seems to
be a lot of trouble to get into for reducing the key size by only one bit!

Fortunately, it turns out we can use a PRG with m = n + 1 to construct a PRG with an
arbitrary polynomial stretch.

Theorem 1. Assume that there exists a PRG. Then for every polynomial p(·), there exists a
PRG G = {Gn} with Gn : {0, 1}n → {0, 1}p(n).

(Note that it is highly recommended that you look at Goldreich’s (see website) much cleaner
and more rigorous exposition of this proof)

Proof. Assume that we have a PRG PRG′ = {G′
n} with G′

n : {0, 1}n → {0, 1}n+1. Let p(·)
be a polynomial. We’ll construct a PRG G = {Gn} with Gn : {0, 1}n → {0, 1}p(n) with
running-time(G) equal to roughly p(n) times the running time of G′.

The algorithm for Gn will be as follows: (notation: for a string x ∈ {0, 1}m, and i < j ≤ m,
x[i...j] is xixi+1 · · ·xj)

Input: x ∈ {0, 1}n.

i← 0
x(0) ← x
while i ≤ p(n):

i← i + 1
x(i) ← Gn(x(i−1)

[1...n])

output x
(i)
n+1

Useful property. We’re going to make use of the following property. The statistical dis-
tance satisfies the following property: If ∆(X, Y ) ≤ ε then for every function f(·), ∆(f(X), f(Y )) ≤
ε. It turns out that computational indistinguishability satisfies a similar property, as long as
f(·) is efficiently computable.

Claim 1.1 (Functions of indistinguishable distributions.). Let X, Y over {0, 1}m such that
X ≈T,ε Y and let f : {0, 1}m → {0, 1}m′

be a function computable by a t circuit (for t < T ).
Then, f(X) ≈T−t−100,ε f(Y ).

1



x
Gn Gn

Gn

x(1)

x
(1)
n+1

x(2)

x
(2)
n+1

xp(n)

x
p(n)
n+1

Output:

Figure 1: Extending output of pseudorandom genertator

(The proof of the claim is left as an exercise.)

Let m = p(n). We define now the following random variables Y (0), . . . , Y (m). The variable
Y (i) will range over {0, 1}n+i and will reflect the state of our pseudorandom generator at the
ith step. That is, Y (0) M= Un, Y (1) M= Gn(Un) , Y (i+1) = Gn(Y (i)

[1...n])Y
(i)
[n+1...n+1].

We will prove the following claim:

Claim 1.2. Let t denote the running time of Gn on length-n inputs (note that t is polynomial).
Then,

Y (m) ≈T−3m2t,3mε Un+m

If we prove Claim 1.2 we’ll be done since the output of our PRG is simply the last m bits of
Y (m) (and its not hard to show that part of a pseudorandom distribution is always pseudo-
random).

Claim 1.2 will be proven by simply plugging in i = m in the following claim:

Claim 1.3. Let t denote the running time of Gn on length-n inputs (note that t is polynomial).
For every 1 ≤ i ≤ m,

Y (i) ≈T−3mti,2iε Un+i

Proof of Claim 1.3. We prove this by induction. Y (0) is simply equal to Un so
there’s nothing to prove in that case. For Y (1) = Gn(Y (0)) the claim follows from
the security of Gn. Thus, let i ≥ 1 and assume that Y (i) ≈T−2ti,2iε Un+i and we’ll
prove this for Y (i+1).
Consider the function f : {0, 1}n+i → {0, 1}n+i+1 defined as follows: f(y) =
Gn(y[1...n])y[n+1...n+i]. That is, f(Y (i)) = Y (i+1). Note that f(·) is computable
in 2t time (assume t ≥ m for convenience). We claim that f(Un+i) ≈T−m,ε Un+i+1.
Indeed, any T −m sized distinguisher between these two distribution can be turned
(by hardwiring the last m bits) into a T sized distinguisher for Gn.
Now by Claim 1.1, this implies that if Y (i) ≈T−2mti,2iε Un+i then f(Y (i) ≈T−2mti−2t−100,2iε

f(Un+1). By transitivity (Claim ??), we get that

f(Y (i)) ≈T−2mti−2t−100,2iε+ε Un+i+1

2



which implies
f(Y (i)) ≈T−3mt(i+1),(2i+1)ε Un+i+1

Note: This proof technique — proving that two distributions X and Y are indistinguishable
by presenting intermediate distributions X(0), . . . , X(m) with X(0) = X and X(m) = Y and
the showing that X(i) is indistinguishable from X(i+1) — is called the hybrid technique, and
is a very important technique in cryptographic proofs. I recommend that you also review the
description of the same theorem and proof in Goldreich’s book (see course web site for link).

Stronger encryption schemes. By plugging this in we get a single message encryption scheme
with key arbitrarily smaller than the message. However, in real life we want multiple messages.
When thinking about multiple messages security, we need to consider the question of where
do these messages come from. We can’t be sure that they are not affected in some way by
our adversary (remember the Brits & Enigma in WWII). Therefore, we want security against
chosen plaintext attack.

CPA Secure Ecnryption scheme. This is the following game:

• Adversary chooses x1, x2.

• Sender chooses k ←R {0, 1}n, i←R {1, 2} and sends y = Ek(xi) to the adversary.

• For as long as adversary desires (but less than T – its running time), adversary chooses
x and sees Ek(x). Note that it is legitimate for the adversary to choose x = x1 or x = x2

but it can also choose other messages.

• Adversary comes up with a guess j. It is successful if i = j.

(E,D) is (T, ε)-CPA secure if for every T -sized adversary, Pr[j = i] ≤ 1/2 + ε. We think
of a scheme as simply CPA secure if with a key size n it is (T (n), ε(n))-CPA secure for
superpolynomial T (·) and ε(·).
Note: a deterministic scheme can’t be CPA secure (see also exercise).

Constructing a CPA secure scheme. It is not immediate how to construct such a scheme from
a pseudorandom generator. To do that, we’ll use a new creature called pseudorandom func-
tions (PRF). PRFs have many other applications in cryptography and seem quite amazing,
but they can be constructed based on any pseudorandom generator.

3


