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Abstract. Classification is one of the basic tasks of data mining in modern
database applications including molecular biology, astronomy, mechanical
engineering, medical imaging or meteorology. The underlying models have to
consider spatial properties such as shape or extension as well as thematic
attributes. We introduce 3D shape histograms as an intuitive and powerful
similarity model for 3D objects. Particular flexibility is provided by using
quadratic form distance functions in order to account for errors of measurement,
sampling, and numerical rounding that all may result in small displacements and
rotations of shapes. For query processing, a general filter-refinement architecture
is employed that efficiently supports similarity search based on quadratic forms.
An experimental evaluation in the context of molecular biology demonstrates
both, the high classification accuracy of more than 90% and the good performance
of the approach.

Keywords. 3D Shape Similarity Search, Quadratic Form Distance Functions,
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1  Introduction

Along with clustering, mining association rules, characterization and generalization,
classification is one of the fundamental tasks in data mining [CHY 96]. Given a set of
classes and a query object, the problem is to assign an appropriate class to the query
object based on its attribute values. Many modern database applications including mo-
lecular biology, astronomy, mechanical engineering, medical imaging, meteorology and
others are faced with this problem. When new objects are discovered through remote
sensing, new tumors are detected from X-ray images, or new molecular 3D structures
are determined by crystallography or NMR techniques, an important question is to
which class the new object belongs. Further steps to deeper investigations may be guid-
ed by the class information: a prediction of primary and secondary effects of drugs could
be tried, the multitude of mechanical parts could be reduced, etc.

As a basis for any classification technique, an appropriate model has to be provided.
Classes represent collections of objects that have characteristic properties in common
and thus are similar, whereas different classes contain objects that have more or less
strong dissimilarities. In all of the mentioned applications, the geometric shape of the
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objects is an important similarity criterion. Along with the geometry, also thematic at-
tributes such as physical and chemical properties have an influence on the similarity of
objects.

Data from real world applications inherently suffer from errors, beginning with er-
rors of measurement, calibration, sampling errors, numerical rounding errors, displace-
ments of reference frames, and small shifts as well as rotations of the entire object or
even of local details of the shapes. Though no full invariance against rotations is gener-
ally required, if the objects are already provided in a standardized orientation, these
errors have to be taken into account. In this paper, we introduce a flexible similarity
model that considers these problems of local inaccuracies and may be adapted by the
users to their specific requirements or individual preferences.

The paper is organized as follows: The remainder of this introduction surveys related
work from molecular biology, data mining, and similarity search in spatial databases. In
Section 2, we introduce the components of our similarity model: 3D shape histograms
for object representation, and a flexible similarity distance function. Due to the large and
rapidly increasing size of current databases, the performance of query processing is an
important task and, therefore, we introduce an efficient multistep system architecture in
Section 3. In Section 4, we present the experimental results concerning the effectiveness
and efficiency of our technique in the context of molecular biology. Section 5 concludes
the paper.

1.1  Classification in Molecular Databases

A major issue in biomolecular databases is to get a survey of the objects, and thus a basic
task is classification: To which of the recognized classes in the database does a new
molecule belong? In molecular biology, there are already classification schemata avail-
able. In many systems, classifying new objects when inserting them into the database
requires supervision by experts that are very experienced and have a deep knowledge of
the domain of molecular biology. What is desired is an efficient classification algorithm
that may act as a fast filter for further investigation and that may be restricted e.g. to
geometric aspects.

A sophisticated classification is available from the FSSP database (Families of
Structurally Similar Proteins), generated by the Dali system [HS 94] [HS 98]. The sim-
ilarity of two proteins is based on their secondary structure, that is substructures of the
molecules such as alpha helices or beta sheets. The evaluation of a pair of proteins is
very expensive, and query processing for a single molecule against the entire database
currently takes an overnight run on a workstation.

Another classification schema is provided by CATH [OMJ+ 97], a hierarchical clas-
sification of protein domain structures, which clusters proteins at four major levels, class
(C), architecture (A), topology (T) and homologous superfamily (H). The class label is
derived from secondary structure content and cannot be assigned for all protein struc-
tures automatically. The architecture label, which describes the gross orientation of sec-
ondary structures, independent of connectivities, is currently assigned manually. The
assignments of structures to topology families and homologous superfamilies are made
by sequence and structure comparisons.



1.2  Nearest-Neighbor Classification

A lot of research has been performed in the area of classification algorithms; surveys are
presented in [WK 91] [MST 94] [Mit 97]. All the methods require that a training set of
objects is given for which both the attribute values and the correct classes are known a-
priori. Based on this knowledge of previously classified objects, a classifier predicts the
unknown class of a new object. The quality of a classifier is typically measured by the
classification accuracy, i.e. by the percentage of objects for which the class label is
correctly predicted.

Many methods of classification generate a description for the members of each class,
for example by using bounding boxes, and assign a class to an object if the object match-
es the description of the class. Nearest neighbor classifiers, on the other hand, refrain
from discovering a possibly complex description of the classes. As their name indicates,
they retrieve the nearest neighbor p of a query object q and return the class label of p in
order to predict the class label of q. Obviously, the definition of an appropriate distance
function is crucial for the effectiveness of nearest neighbor classification. In a more
general form, called k-nearest neighbor classification, k nearest neighbors of the query
object q are used to determine the class of q. Thus, the effectiveness depends on the
number k as well as on the weighting of the k neighbors. Both, appropriate similarity
models as well as efficient algorithms for similarity search are required for successful
nearest neighbor classification.

1.3  Geometry-Based Similarity Search

Considerable work on shape similarity search in spatial database systems has been per-
formed in recent years. As a common technique, the spatial objects are transformed into
high-dimensional feature vectors, and similarity is measured in terms of vicinity in the
feature space. The points in the feature space are managed by a multi-dimensional index.
Many of the approaches only deal with two-dimensional objects such as digital images
or polygonal data and do not support 3D shapes.

Let us first survey previous 2D approaches from the literature. In [GM 93], a shape
is represented by an ordered set of surface points, and fixed-sized subsets of this repre-
sentation are extracted as shape features. This approach supports invariance with respect
to translation, rotation and scaling, and is able to deal with partially occluded objects.
The technique of [BKK 97] applies the Fourier transform in order to encode sections of
polygonal outlines of 2D objects; even partial similarity is supported. Both methods
exploit a linearization of polygon boundaries and, therefore, are hard to extend to 3D
objects. In [Jag 91], shapes are approximated by rectangular coverings. The rectangles
of a single object are sorted by size, and the largest ones are used for the similarity
retrieval. The method of [KSF+ 96] is based on mathematical morphology and uses the
max morphological distance and max granulometric distance of shapes. It has been ap-
plied to 2D tumor shapes in medical image databases. A 2D technique that is related to
our 3D shape histograms is the Section Coding technique [Ber 97] [BK 97] [BKK 97a].
For each polygon, the circumscribing circle is decomposed into a given number of sec-
tors, and for each sector, the area of the polygon inside of this sector divided by the total
area of the polygon is determined. Similarity is defined in terms of the Euclidean dis-



tance of the resulting feature vectors. The similarity model in [AKS 98] handles 2D
shapes in pixel images and provides a solution for the problem of small displacements.

The QBIC (Querying By Image Content) system [FBF+ 94] [HSE+ 95] contains a
component for 2D shape retrieval where shapes are given as sets of points. The method
is based on algebraic moment invariants and is also applicable to 3D objects [TC 91]. As
an important advantage, the invariance of the feature vectors with respect to rigid trans-
formations (translations and rotations) is inherently given. However, the adjustability of
the method to specific applications is restricted. From the available moment invariants,
appropriate ones have to be selected, and their weighting factors may be modified.
Whereas the moment invariants are abstract quantities, the shape histograms presented
in this paper are more intuitive and may be graphically visualized, thus providing an
impression of the suitability for specific applications.

The Geometric Hashing paradigm for model-based 3D object recognition was intro-
duced by [LW 88]. The objects are represented by sets of points; from these points, non-
collinear triplets are selected to represent different orientations of a single object. For
each of these orientations, every point of an object is stored in a hash table that maps 3D
points to objects and their orientations. The query processing heuristic requires a certain
threshold provided by the user. This threshold has a substantial impact on the effective-
ness of the technique and, thus, an appropriate choice is crucial. If the threshold is too
high, no answer is reported; if the threshold is too low, however, there is no guarantee
and, moreover, no feedback whether the best matching object with respect to the under-
lying similarity model is returned. In contrast to that, the k-nearest neighbor algorithm
used in our approach ensures that the k most similar objects are returned. There are no
objects in the database which are more similar than the retrieved ones.

The approximation-based similarity model presented in [KSS 97] and [KS 98] ad-
dresses the retrieval of similar 3D surface segments. These surface segments occur in
the context of molecular docking prediction where they represent potential docking
sites. Since the segments are designed to model local portions of 3D surfaces but not to
model the entire contour of a 3D solid, this technique is not applicable for searching 3D
solids having similar global shapes.

1.4  Invariance Properties of Similarity Models

All the mentioned similarity models incorporate invariance against translation of the
objects, some of them also include invariance against scaling which is not necessarily
desired in the context of molecular or CAD databases. With respect to invariance against
rotations, two approaches can be observed. Some of the similarity models inherently
support rotational invariance, e.g. by means of the Fourier transform [BKK 97] or the
algebraic moment invariants [TC 91]. Most of the techniques, however, include a pre-
processing step that rotates the objects to a normalized orientation, e.g. by a Principal
Axis Transform. If rotations should be considered nevertheless, the objects may be ro-
tated artificially by certain angles as suggested in [Ber 97]. For some applications, even-
tually, rotational invariance may be not required, e.g. if mechanical parts in a CAD
database are already stored in a standardized orientation.

An important kind of invariance has not yet be considered in previous work, the
robustness of similarity models against errors of measurement, calibration, sampling



errors, errors of classification of object components, numerical rounding errors, and
small displacements such as shifts or slight rotations of geometric details. In our model,
these problems are addressed and may be controlled by the user by specifying and adapt-
ing a similarity matrix for histogram bins.

2  A 3D Shape Similarity Model

In this section, we introduce our 3D shape similarity model by defining the two major
ingredients: First, the shape histograms as an intuitive and discrete representation of
complex spatial objects. Second, an adaptable similarity distance function for the shape
histograms that may take small shifts and rotations into account by using quadratic
forms.

2.1  Shape Histograms

The definition of an appropriate distance function is crucial for the effectiveness of any
nearest neighbor classifier. A common approach for similarity models is based on the
paradigm of feature vectors. A feature transform maps a complex object onto a feature
vector in a multidimensional space. The similarity of two objects is then defined as the
vicinity of their feature vectors in the feature space.

We follow this approach by introducing 3D shape histograms as intuitive feature
vectors. In general, histograms are based on a partitioning of the space in which the
objects reside, i.e. a complete and disjoint decomposition into cells which correspond to
the bins of the histograms. The space may be geometric (2D, 3D), thematic (e.g. physi-
cal or chemical properties), or temporal (modeling the behavior of objects).

We suggest three techniques for decomposing the space: A shell model, a sector
model, and a spiderweb model as the combination of the former two (cf. Figure 1). In a
preprocessing step, a 3D solid is moved to the origin. Thus the models are aligned to the
center of mass of the solid. 

Shell Model. The 3D is decomposed into concentric shells around the center point. This
representation is particularly independent from a rotation of the objects, i.e. any rotation
of an object around the center point of the model results in the same histogram. The radii
of the shells are determined from the extensions of the objects in the database. The
outermost shell is left unbound in order to cover objects that exceed the size of the
largest known object.

Figure 1. Shells and sectors as basic space decompositions for shape histograms. In
each of the 2D examples, a single bin is marked

4 shell bins 12 sector bins 48 combined bins



Sector Model. The 3D is decomposed into sectors that emerge from the center point of
the model. This approach is closely related to the 2D section coding method [BKK 97a].
However, the definition and computation of 3D sector histograms is more sophisticated,
and we define the sectors as follows: Distribute the desired number of points uniformly
on the surface of a sphere. For this purpose, we use the vertices of regular polyhedrons
and their recursive refinements. Once the points are distributed, the Voronoi diagram of
the points immediately defines an appropriate decomposition of the space. Since the
points are regularly distributed on the sphere, the Voronoi cells meet at the center point
of the model. For the computation of sector-based shape histograms, we need not to
materialize the complex Voronoi diagram but simply apply a nearest neighbor search in
3D since typical number of sectors are not very large.
Combined Model. The combined model represents more detailed information than
pure shell models and pure sector models. A simple combination of two fine-grained 3D
decompositions results in a high dimensionality. However, since the resolution of the
space decomposition is a parameter in any case, the number of dimensions may easily
be adapted to the particular application.

In Figure 2, we illustrate various shape histograms for the example protein, 1SER-B,
which is depicted on the left of the figure. In the middle, the various space decomposi-
tions are indicated schematically, and on the right, the corresponding shape histograms
are depicted. The top histogram is purely based on shell bins, and the bottom histogram
is defined by 122 sector bins. The histograms in the middle follow the combined model,
they are defined by 20 shell bins and 6 sector bins, and by 6 shell bins and 20 sector bins,
respectively. In this example, all the different histograms have approximately the same
dimension of around 120. Note that the histograms are not built from volume elements
but from uniformly distributed surface points taken from the molecular surfaces. 

2.2  Shortcomings of the Euclidean Distance

In order to quantify the dissimilarity of objects, an appropriate distance function of
feature vectors has to be provided. An obvious solution is to employ the classic Euclid-
ean distance function which is well-defined for feature spaces of arbitrary dimension. In
a squared representation, the Euclidean distance of two N-dimensional vectors p and q
is defined as:

.

However, the Euclidean distance exhibits severe limitations with respect to similar-
ity measurement. In particular, the individual components of the feature vectors which
correspond to the dimensions of the feature space are assumed to be independent from
each other, and no relationships of the components such as substitutability and compens-
ability may be regarded. The following example demonstrates these shortcomings in
more detail.

Let us consider the three objects a, b, and c from Figure 3. From a visual inspection,
we assess the objects a and b to be more similar than a and c or b and c since the two
characteristic peaks are located more close together in the objects a and b than in object
c. However, the peaks of a and b do not overlap the same sectors and, therefore, are
mapped to distinct histogram bins. The Euclidean distance neglects any relationship of

deuclid
2
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the vector components and does not reflect the close similarity of a and b in comparison
to c. Thus, the three objects count for being equally similar, because their feature vectors
have the same distance in pairs. 

2.3  Quadratic Form Distance Functions

An approach to overcome these limitations has been investigated for color histograms in
the QBIC project (Query by Image Content) at IBM Almaden [FBF+ 94] [HSE+ 95].
The authors suggest to use quadratic form distance functions which have also been
successfully applied to several multimedia database applications [Sei 97] [SK 97]
[KSS 97] [AKS 98] [KS 98]. A quadratic form distance function is defined in terms of
a similarity matrix A as follows where the components aij of the matrix A represent the
similarity of the components i and j in the underlying vector space.

.

From this definition, it becomes clear that the standard Euclidean distance is a spe-
cial case of the quadratic form distance which is achieved by using the identity matrix Id

Figure 2. Several 3-D shape histograms of the example protein 1SER-B. From top to
bottom, the number of shells decreases and the number of sectors increases
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as similarity matrix. Analogously, we obtain a weighted Euclidean distance function
that has the weights  by using the diagonal matrix  as
similarity matrix. In both cases, the non-diagonal components are set to zero which
exactly corresponds to the fact that no cross-similarities of the dimensions are assumed.

The Euclidean distance of two vectors p and q is totally determined, there is no
parameter which may be tuned. The weighted Euclidean distance is a little more flexible
because it controls the effect of each vector component onto the overall distance by
specifying individual weights for the dimensions. A new level of flexibility is supported
by the general quadratic form distance function. On top of specifying the effect of indi-
vidual dimensions onto the overall distance, cross-dependencies of the dimensions may
be handled.

By using a quadratic form distance function as an adaptable similarity function, the
problems of the Euclidean distance may be overcome. The neighborhood of bins in
general and of shells or sectors in particular may be represented as similarity weights in
the similarity matrix A. The individual similarity weights depend on the distances of the
corresponding bins. Let us denote by  the distance of the cells that correspond to
the bins i and j. For shells, we define the bin distance to be the difference of the corre-
sponding shell radii, and for sectors, we use the angle between the sector centers as bin
distances. When provided with an appropriate bin distance function, we compute the
corresponding similarity weights by an adapted formula from [HSE+ 95] as follows:

.

The parameter σ controls the global shape of the similarity matrix. The higher σ, the
more similar is the resulting matrix to the identity matrix. In any case, a high value of σ
yields the matrix to be diagonally dominant. We observed good results for σ between 1.0
and 10.
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Figure 3. Shortcomings of the Euclidean distance. The Euclidean distance of the shape
histograms does not reflect the similarity that is due to the proximity of neighboring sectors
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2.4  Invariance Properties of the Models

In general, the 3D objects are located anywhere in the 3D, and their orientation as well
as their size can vary arbitrarily. For defining meaningful and applicable similarity mod-
els, we have to provide invariance for translations, scaling and rotation, depending on
the application. We can ensure these invariances in three ways, by a preprocessed nor-
malization step, by the similarity model itself or by both steps.

In a normalization step, we perform translation and rotation of all objects. After the
translation which maps the center of mass of each object onto the origin, we perform a
Principal Axes Transform on the object. The computation for a set of 3D points starts
with the -covariance matrix where the entries are determined by an iteration over
the coordinates  of all points:

.

The eigenvectors of this covariance matrix represent the principal axes of the origi-
nal 3D point set, and the eigenvalues indicate the variance of the points in the respective
direction. As a result of the Principal Axes Transform, all the covariances of the trans-
formed coordinates vanish. Although this method in general leads to a unique orienta-
tion of the objects, this does not hold for the exceptional case of an object with at least
two variances having the same value. In our experiments using the protein database, we
almost never observed such cases and, therefore, assume a unique orientation of the
objects.

The similarity models themselves have inherent invariance properties. Obviously,
the sector model is invariant against scaling, whereas the shell model trivially has rota-
tional invariance. Often, no full invariance is desired, instead just small displacement,
shifts or rotations of geometric details occur in the data, for example caused by errors of
measurement, sampling or numerical rounding errors. This variation of invariance pre-
cision which is highly application- and user-dependent is supported by the user-defined
similarity matrix modeling the appropriate similarity weight for each pair of bins.

2.5  Extensibility of Histogram Models

What we have discussed so far is a very flexible and intuitive similarity model for 3D
objects. However, the distance function of the similarity model is based just on the
spatial attributes of the objects. Frequently, on top of the geometric information, a lot of
thematic information is used to describe spatial objects. Particularly in protein databas-
es, the chemical structure and physical properties are important. Examples include atom
types, residue types, partial charge, hydrophobicity, electrostatic potential among oth-
ers. A general approach to manage thematic information along with spatial properties is
provided by combined histograms. Figure 4 demonstrates the basic principle. Assume
we are given a spatial histogram structure as presented above, and additionally a themat-
ic histogram structure to be given. A combined histogram structure is immediately ob-
tained as the Cartesian product of the original structures. 

3 3×
x y z, ,( )

x2∑ xy∑ xz∑
xy∑ y2∑ yz∑
xz∑ yz∑ z2∑



Obviously, this product based approach leads to a tradeoff between a more powerful
modeling versus a very high dimensionality. An investigation of the efficiency and ef-
fectiveness as well as the development of new techniques that meet the requirements of
ultra high dimensional spaces is part of our future research plans.

3  Efficient Query Processing

Due to the enormous and still increasing size of modern databases that contain tens and
hundreds of thousands of molecules, mechanical parts, or medical images, the task of
efficient query processing becomes more and more important. In the case of quadratic
form distance functions, the evaluation time of a single database object increases quadrat-
ically with the dimension. We measured 0.23 milliseconds in the average for 21D histo-
grams, 6.2 milliseconds for 256D and 1,656 milliseconds in 4,096D space (cf. Figure 5).
Thus, linearly scanning the overall database is prohibitive. In order to achieve a good
performance, our system architecture follows the paradigm of multistep query process-
ing: An index-based filter step produces a set of candidates, and a subsequent refinement
step performs the expensive exact evaluation of the candidates [Sei 97] [AKS 98]. 

3.1  Optimal Multistep k-Nearest Neighbor Search

Whereas the refinement step in a multistep query processor has to ensure the correct-
ness, i.e. no false hits may be reported as final answers, the filter step is primarily re-
sponsible for the completeness, i.e. no actual result may be missing from the final an-
swers and, therefore, from the set of candidates. Figure 6 illustrates the architecture of
our multistep similarity query processor that fulfills this property [SK 98]. Moreover, as
an advantage over the related method of [KSF+ 96], our algorithm is proven to be opti-
mal, i.e. it produces only the minimum number of candidates. Thus, expensive evalua-
tions of unnecessary candidates are avoided, and we observed improvement factors of
up to 120 for the number of candidates and 48 for the overall runtime.

0
100
200
300
400
500

A
LA

A
S

N

C
Y

S

G
LU H
IS

LE
U

M
E

T

P
R

O

T
H

R

T
Y

R

residue type

Figure 4. Example for a combined thematic and shape histogram for a molecule

1SER-B
0

500

1000

shells



Based on a multidimensional index structure, the filter step performs an incremental
ranking that reports the objects ordered by their increasing filter distance to the query
object using an algorithm derived from [HS 95]. The number of accessed index pages is
minimum as proven in [BBKK 97], and the termination is controlled by the refinement
step in order to guarantee the minimum number of candidates [SK 98]. Only for the
exact evaluation in the refinement step, the exact object representation is retrieved from
the object server. 

In order to guarantee no false dismissals caused by the filter step, the filter distance
function df has to be a lower bound of the exact object distance function do that is eval-
uated in the refinement step. That is, for all database objects p and all query objects q,
the following inequality has to hold:

.

3.2  Reduction of Dimensionality for Quadratic Forms

A common approach to manage objects in high-dimensional spaces is to apply tech-
niques to reduce the dimensionality. The objects in the reduced space are then typically
managed by any multidimensional index structure [GG 98]. The typical use of common
linear reduction techniques such as the Principal Components Analysis (PCA) or Kar-
hunen-Loève Transform (KLT), the Discrete Fourier or Cosine Transform (DFT, DCT),
the Similarity Matrix Decomposition [HSE+ 95] or the Feature Subselection [FBF+ 94]
includes a clipping of the high-dimensional vectors such that the Euclidean distance in
the reduced space is always a lower bound of the Euclidean distance in the high-dimen-
sional space.

The question arises whether these approved techniques are applicable to general
quadratic form distance functions. Fortunately, the answer is positive; an algorithm to
reduce the similarity matrix from a high-dimensional space down to a low-dimensional
space according to a given reduction technique was developed in the context of multi-
media databases for color histograms [SK 97] and shapes in 2D images [AKS 98]. The
method guarantees three important properties: First, the reduced distance function is a
lower bound of the given high-dimensional distance function. Obviously, this criterion
had to be a design goal in order to meet the requirements of multistep similarity query
processing. Second, the reduced distance function again is a quadratic form and, there-
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fore, the complexity of the query model is not increased while decreasing the dimension
of the space. Third, the reduced distance function is the greatest of all lower-bounding
distance functions in the reduced space. As an important implication of this property, the
selectivity in the filter step is optimal: In the reduced space, no lower-bounding distance
function is able to produce a smaller set of candidates than the resulting quadratic form. 

3.3  Ellipsoid Queries on Multidimensional Index Structures

The task remains to efficiently support k-nearest neighbor search and incremental rank-
ing for quadratic form distance functions in low-dimensional spaces. Due to the geomet-
ric shape of the query range, a quadratic form-based similarity query is called an ellip-
soid query [Sei 97]. An efficient algorithm for ellipsoid query processing on
multidimensional index structures was developed in the context of approximation-based
similarity search for 3-D surface segments [KSS 97] [KS 98]. The method is designed
for index structures that use a hierarchical directory based on rectilinear bounding boxes
such as the R-tree [Gut 84], R+-tree [SRF 87], R*-tree [BKSS 90], X-tree [BKK 96]
[BBB+ 97], and Quadtrees among others; surveys are provided in [Sam 90] [GG 98].
The technique is based on measuring the minimum quadratic form distance of a query
point to the hyperrectangles in the directory. Recently, an improvement by using conser-
vative approximations has been suggested [ABKS 98].

An important property of the method is its flexibility with respect to the similarity
matrix. The matrix does not have to be available at index creation time and, therefore,
may be considered as a query parameter. Thus, the users may specify and adapt the
similarity weights in the matrix even at query time according to their individual prefer-
ences or to the specific requirements of the application. In any case, the same precom-
puted index may be used. This property is the major advantage compared to previous
solutions that were developed in the context of color histogram indexing in the QBIC
project [FBF+ 94] [HSE+ 95] where the index depends on a specific similarity matrix
that has to be given in advance.

The cost model of [BBKK 97] provides a theoretical analysis of the performance
deterioration for multidimensional index structures with increasing dimensionality. An
investigation in [WSB 98] results in the recommendation to use an accelerated sequen-

Figure 6. Multistep similarity query processing
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tial scan, and the VA-File was developed following this paradigm. However, the analy-
ses are based on the L2 (Euclidean distance), L1, and  norms that may be evaluated in
linear time depending on the dimension, and the results require careful reviewing and
experimental evaluation when applied to quadratic form distance functions. Even if the
index is substituted by a sequential scan, the filter-refinement architecture will still be
necessary due to the high cost of exact quadratic form evaluations.

4  Experimental Evaluation

We implemented the algorithms in C++ and ran the experiments on our HP C160 work-
stations under HP-UX 10.20. For single queries, we also implemented a HTML/Java
interface that supports query specification and visualization of the results. The atomic
coordinates of the 3D protein structures are taken from the Brookhaven Protein Data
Bank (PDB) [BKW+ 77]. For the computation of shape histograms, we use a represen-
tation of the molecules by surface points as it is required for several interesting problems
such as the molecular docking prediction [SK 95]. The reduced feature vectors for the
filter step are managed by an X-tree [BKK 96] of dimension 10.

The similarity matrices are computed by an adapted formula from [HSE+ 95] where
the similarity weights aij of bin i and j are defined as . The distance 
is equal to the difference of the corresponding shell radii in the shell model and is given
by the angle between the sector axes in the sector model. In the combined model, the
shell distance  and the sector distance  of the bins i and j are com-
posed by using the Euclidean distance formula .
We experimented with several values of the parameter σ but did not observe significant
changes in the accuracy, so we set the parameter σ equal to 10 for the following evalua-
tions [Kas 98].

4.1  Basic Similarity Search

In order to illustrate the applicability of the similarity model, we demonstrate the retriev-
al of the members of a known family. As a typical example, we chose the seven Seryl-
tRNA Synthetase molecules from our database that are classified by CATH [OMJ+ 97]
to the same family. The diagram in Figure 7 presents the result using shape histograms
for 6 shells and 20 sectors. The seven members of the Seryl family rank on the top seven
positions among the 5,000 molecules of the database. In particular, the similarity dis-
tance noticeable increases for 2PFK-A, the first non-Seryl protein in the ranking order. 

4.2  Classification by Shape Similarity

For the classification experiments, we restricted our database to the proteins that are also
contained in the FSSP database [HS 94] and took care that for every class, at least two
molecules are available. From this preprocessing, we obtained 3,422 proteins assigned
to 281 classes. The classes contain between 2 and 185 molecules. In order to measure the
classification accuracy, we performed leave-one-out experiments for various histogram
models. For each molecule in the database, the nearest neighbor classification was de-
termined after removing that element from the database. Technically, we always used
the same database and selected the second nearest neighbor since the query object itself
is reported to be its own nearest neighbor.

L∞

aij e σ– d i j,( )⋅= d i j,( )

dshell i j,( ) dsector i j,( )
dcomb i j,( ) dshell

2 i j,( ) dsector
2 i j,( )+=



Figure 8 demonstrates the results for histograms based on 12 shells, 20 sectors, and
the combination of them. Obviously, the more fine-grained spiderweb model yields the
best classification accuracy of 91.5 percent (top diagram), but even for the coarse sector
histograms, a noticeable accuracy of 87.3 percent is achieved. These results compete
with the accuracy of available protein classification systems such as CATH [OMJ 97]
where also more than 90% of the class labels are predicted correctly. Whereas in CATH
only four different class labels are used for the automatic classification, our experiments
are based on a variety of 281 class labels. 

The average overall runtime for a single query reflects the larger dimension of the
combined model. It ranges from 0.05s for 12 shells over 0.2s for 20 sectors up to 1.42s
for the combination. This runtime performance in the range of tens to thousands of
milliseconds is a progress compared to established biomolecular systems for which que-
ry response times in the range of minutes and hours are reported [HS 98].

Figure 9 illustrates the effect of simply increasing the dimension of the model without
combining orthogonal space partitionings. Again we observed the expected result that
more information yields better accuracy. When increasing the histogram dimension by
a factor of 10, the accuracy increases from 71.6 to 88.1 for the shell model, and from
87.3 to 91.6 for the sector model. For the task of classification, the increased granularity
results in a better separation of the class members from the other objects. Obviously, the
tradeoff for this gain is a larger space requirement and the increase of the runtime due to
the high dimensionality. We plan to develop a cost model for obtaining the optimal
number of bins in order to produce both accurate and fast results. 

Figure 7. Similarity ranking for the Seryl-tRNA Synthetases 1SER-B. The diagram depicts
the similarity distances of the 12 nearest neighbors to the query protein 1SER-B in ascending
order. The illustration of the top eight molecules demonstrates the close similarity within the
family, and the dissimilarity to the first non-Seryl protein in the ranking
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In these experiments, we achieve the same accuracy for a fine-grained 122D sector
model as we obtained from the 12 x 20 (240D) combined model. One may wonder why
the combined model does not lead to the best accuracy. Although all proposed models
yield good results in terms of accuracy and runtime, the sector model turns out to be
most suitable for the tested data. One reason for this data-dependent result is that the
decomposition of the 3D objects is computed for uniform sectors or equidistant shells.
To reveal the properties of the space decompositions, we computed the standard devia-
tion for each bin over all histograms. We present the observations by bar diagrams where
the height of a bar represents the value of the standard deviation for the corresponding
dimension.
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Figure 8. Classification accuracy (top diagram) and average runtime of query processing
(bottom diagram) for histograms with 12 shells, 20 sectors, and their combination
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Figure 9. The accuracy increases with increasing granularity of the space partitioning for both,
shell and sector histograms



Figure 10 demonstrates that for the shell model, the values of the standard deviations
are distributed very unbalanced. For the 12D model, the highest standard deviation oc-
curs in the shells 2 to 4 that contain the large majority of the surface points, and a low
deviation is observed for the shells 7 to 12. For the 120D model, significant deviations
occur only for the shells 3 to 60; there is only a low variance in the number of points for
the other shells which are populated very sparse. Therefore, the corresponding histo-
gram bins do not contribute to distinguish between different molecules but just increase
the dimension and, as a consequence, the runtime becomes worse.  

Figure 11 depicts the standard deviations for the two sector models, 20D and 122D.
For every histogram bin, the standard deviation is high, and, therefore, all dimensions
contribute to the distinction of different molecules. For the combined model, the stan-
dard deviations of the 240 bins are illustrated in Figure 12. These 240 bins result from
the decomposition of the 3D space into 12 shells and 20 sectors. Therefore, the periodic
pattern in the standard deviation reflects the previous observations for the shell and the
sector models.  
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Figure 10. Standard deviations of the bins for the 12D (top) and 120D (bottom) shell models
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Figure 11. Standard deviations of the bins for the 20D (top) and 122D (bottom) sector models
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As a way to improve the properties of the shell model, we plan to use a more appro-
priate partitioning of the space. Instead of using equidistant radii to define the decompo-
sition, the shell radii could be based on quantiles that are obtained from the distribution
of the surface points in the space. As a consequence, this approach will also improve the
effectiveness of the combined model.

5  Conclusions

In this paper, we presented a new intuitive and flexible model for shape similarity search
of 3D solids. As a specific feature transform, 3D shapes are represented by using shape
histograms for which several partitionings of the space are possible. This histogram
model naturally is extensible to thematic attributes such as physical and chemical prop-
erties. In order to account for errors of measurement, sampling, numerical rounding etc.,
quadratic form distance functions are used that are able to take small displacements and
rotations into account. For efficient query processing, a filter-refinement architecture is
used that supports similarity query processing based on high-dimensional feature vec-
tors and quadratic form distance functions. The experiments demonstrate both, the high
classification accuracy of our similarity model, and the good performance of the under-
lying query processor.

The improvement of the space decomposition by using a quantile based method, the
development of a cost model for determining the optimal number of bins, and the inves-
tigation of thematically extended histogram models are plans for our future work al-
ready mentioned so far. In addition, we will include a visualization of shape histograms
as a Java applet in order to provide an explanation component for the classification
system. This is an important issue since any notion of similarity is subjective in a high
degree, and the users want to have as much feedback as possible concerning the behav-
ior of the system depending on their queries and input parameters. Furthermore, the
confidence of the users in an automatic classification increases with the reproducability
of the decision by the user which can be enhanced by visualization methods. A more
conceptual future work addresses the optimization of the space partitioning and the
geometry of the cells which form the histogram bins. Both the number as well as the
geometry of the cells affect the effectiveness and also the efficiency of similarity search
and classification.
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Figure 12. Standard deviations of the combined histogram bins. For each of the 20 sectors, the
characteristic shape of the 12-shell histogram can be recognized
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