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1 Ramsey Numbers

Our first application we discuss is to proving bounds on Ramsey numbers, which are of
great interest in combinatorics. As an introduction to what they are, consider the following
theorem.

Theorem 1 In any group of 6 people, there are either 3 mutual acquaintances or 3 mutual
strangers.

Proof: Consider a complete graph on 6 vertices, one vertex corresponding to each of the
6 people. We color the edges of the graph with 2 colors, red and blue. An edge between
two vertices is colored red if the corresponding people are strangers. If they are mutual
acquaintances, the edge is colored blue. Note: We assume that one of the two cases always
occurs. We need to prove that there is either a red triangle or a blue triangle in the graph.

Pick any vertex, say u. Of the five edges incident on u, at least three must be of the
same color. Without loss of generality, suppse there are three edges colored blue incident
on u. Let the other end points on these edges be v1, v2, v2. If any of the edges (vi, vj) is
colored blue, then the vertices u, vi, vj form a blue triangle. If this is not the case, then all
edges (vi, vj) must be red. In this case, v1, v2, v3 form a red triangle. Thus there is always a
monochromatic triangle.

The above theorem is false if 6 is replaced by 5. (Verify this !) It is possible to color
the edges of K5 such that there is neither a red triangle nor a blue triangle. Thus, 6 is the
smallest number for which the property holds.

Definition 1 The Ramsey number R(k, l) is the smallest value of n such that any edge
coloring of Kn with two colors, say red and blue, has either a set of k vertices such that all
edges between them are colored red, or a set of l vertices such that all edges between them
are colored blue.

In order to show that R(k, l) > n, we need to show that there is a way to color the edges
of Kn with colors red and blue such that there the graph does not contain a red Kk or a blue
Kl. The discussion above shows that R(3, 3) = 6. Exact values for the Ramsey numbers are
hard to come by. It is known that R(4, 4) = 18, but the current best bounds on for R(5, 5)
are 42 ≤ R(5, 5) ≤ 56.
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We describe a lower bound on R(k, k) due to Erdös. The proof uses probability in an
interesting way and is an example of the probabilistic method. This is a remarkable technique
to prove the existence of certain objects without explictly constructing them.

Theorem 2 If n, k are integers such that
(

n

k

)

21−(k

2
) < 1

then R(k, k) > n.

Proof: Suppose we color the edges of Kn with colors red and blue at random, i.e. for
each edge, we assign color red with probability 1/2 and assign color blue with probability
1/2. We make these choices independetly and at random for every edge. We will bound the
probability that there is a monochromatic copy of Kk in the graph.

First, consider a set S of k vertices and consider the event MS that the subgraph induced
by S is monochromatic. Note that there are kchoose2 edges in the subgraph. The probability

that they are all red is 2−(k

2
) and the probability that they are all blue is 2−(k

2
). Thus

Pr[MS ] = 2 · 2−(k

2
) = 21−(k

2
).

The event that there is some monochromatic complete graph on k vertices is the union
of the events MS for all sets S of size k. By the union bound, the probability of this event

is at most
(

n
k

)

21−(k

2
). By the assumption in the statement of the theorem, this probability

is strictly less than 1. Hence the probability of the complementary event, i.e. that there is
no monochromatic Kk, is strictly positive. This implies that there must be some point in
the sample space, i.e. some coloring of Kn such that there is no monochromaic Kk. Thus
R(k, k) > n, establishing the theorem.

Notice that the proof shows that the required coloring exists without giving an explicit
construction of such a coloring.

Corollary 1 R(k, k) ≥ 2k/2 for k ≥ 2

Proof: We prove that the condition in Theorem 2 holds for any n < 2k/2. This is easy to
verify for k ≥ 4 using the inequality

(

n
k

)

≤ nk/2k−1. (See Exercise 17 in Section 4.4 of the
Rosen text). We omit the details.

Also the statement of the theorem holds for k = 2 and k = 3 since R(2, 2) = 2 and
R(3, 3) = 6.

Next we consider a slight generalization of the idea used in the proof. In particular, we
use the fact that if there is a random variable X with E[X] = µ, then there must be a point
s in the sample space such that X(s) ≥ µ.

Given a graph G(V, E), a cut is a partition of the vertices into two disjoint sets V1 and
V2. Let E(V1, V2) = {(u, v) ∈ E|u ∈ V1 and v ∈ V2}. The size of the cut is defined to be
|E(V1, V2)|. We say that an edge e belongs to the cut if e ∈ E(V1, V2).

Theorem 3 For any graph G(V, E) there is a cut of size at least —E—/2
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Proof: Suppose we produce a cut at random, i.e. for evey vertex u, we place u in V1

with probability 1/2 and place u in V2 with probability 1/2. We make these random choices
for every vertex u ∈ V independently of the other vertices. Then, the probability that a
particular edge (u, v) belongs to the cut (V1, V2) is exactly 1/2.

The size of the cut can be expressed as the sum of indicator random variables Xe, one
for each edge e ∈ E. The indicator random variable Xe represents the event that e belongs
to the cut, i.e. it is 1 if e is in the cut and 0 otherwise. Then E[Xe] = 1/2.

By linearity of expectation, the expected size of the cut (V1, V2) is |E|/2. Hence there
must exist some cut of value at least |E|/2.

Next we consider an example involving boolean expressions. A 3-SAT formula is an AND
of clauses, where each clause is an OR of three literals. Each literal is one of the boolean
variables x1, . . . , xn or their negations x1, . . . , xn. Testing whether there is an assignment to
the variables so as to satisfy all clauses is an NP-hard problem. However, the next theorem
shows that it is always possible to satisfy a large fraction of clauses in such a formula.

Theorem 4 For any 3-SAT formula with m clauses, there exists an assignment to the vari-
ables which satisfies (7/8)m clauses.

Proof: Consider assigning truth values to variables at random, i.e. for every variable, we
pick value T (true) with probability 1/2 and value F (false) with probability 1/2.

It is easy to verify that for any clause C, the probability that C is satisfied is 7/8. Arguing
along similar lines as in the previous proof, the expected number of clauses satisfied by a
random assignment is (7/8)m. Thus there must exist some truth assignment that satisfies
at least (7/8)m clauses.

The proof gives a randomized algorithm to construct a truth assignment with expected
number of clauses satisfied being (7/8)m. We can actually give a deterministic algorithm
to find a truth assignment satisfying at least (7/8)m clauses. Note that we can always do
this by checking all possible 2n truth assignments, but such an algorithm would be terribly
inefficient. The point is that such a truth assignment can be constructed deterministically
in polynomial time.

Consider producing a truth assignment at random by setting the variables in the order
x1, . . . , xn. We will gradually replace the random choices by deterministic choices. Let X
denote the number of clauses satisfied by an assignment. Then E[X] = (7/8)m, where the
expectation is over the random choice of an assignment to x1, . . . , xn. We will be interested
in the the value of X given an assignment v1, . . . vi to x1, . . . , xi, i.e. the value of X when
the x1 = v1, . . . , xi = vi and the remaining variables have random values. We will show that
there exists a partial assignment v1, . . . , vi such that

E[X|x1 = v1, . . . , xi = vi] ≥ (7/8)m (1)

Given such a partial assignment for x1, . . . , xi, we show how to extend this to such a partial
assignment for x1, . . . , xi, xi+1 by picking an appropriate value for xi+1. If we show this
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we are done. Initially, we start with an empty assignment. Clearly E[X] ≥ (7/8)m. By
repeating this procedure for n steps, we construct an assignment v1, . . . vn for x1, . . . , xn.
Since all variables are assigned values E[X|x1 = v1, . . . , xn = vn] is simply the number of
clauses satisfied by the assignment v1, . . . , vn. By the property (1) of this assignment, the
number of clauses satisfied is at least (7/8)m.

It remains to show how we can extend the assignment at every step. Suppose we have
an assignment v1, . . . , vi satisfying (1). Note that

E[X|x1 = v1, . . . , xi = vi] =
1

2
E[X|x1 = v1, . . . , xi = vi, xi+1 = T ]

+
1

2
E[X|x1 = v1, . . . , xi = vi, xi+1 = F ] (2)

We pick vi+1 = T or vi+1 = F depending on which term on the LHS of (2) is higher. In
other words, we pick vi+1 = T if

E[X|x1 = v1, . . . , xi = vi, xi+1 = T ] ≥ E[X|x1 = v1, . . . , xi = vi, xi+1 = F ]

and vi+1 = F otherwise. The choice of vi+1 ensures that

E[X|x1 = v1, . . . , xi = vi+1] ≥ E[X|x1 = v1, . . . , xi = vi] ≥ (7/8)m.

In order to make this choice efficiently at every step, we need to be able to compute the
value of terms of the form E[X|x1 = v1, . . . , xi = vi] in polynomial time. This is easy to do.
We first apply the assignment to the variables x1, . . . , xi and simplify the clauses in which
they appear.

The expected number of clauses satisfied by completing the assignment at random can
be computed (using linearity of expectation) by adding up a contribution from every clause
C. The contribution from clause C is the probability that clause C is satisfied by a random
completion of the partial assignment. The probability that clause C is satisifed is 0 if all
literals have already been set to F. It is 1 if any literal has already been set to T. If neither of
these happen, and the clause has r literals unassigned, then the probability that the clause
is satisfied is 1 − 1/2r.

Clearly this expectation can be computed in polynomial time. Thus, we obtain an effi-
cient deterministic algorithm for finding a truth assignment to variables satisfying (7/8)m
clauses. The deterministic algorithm was obtained by derandomizing the random choices in
the original randomized algorithm. This derandomization method is called the method of
conditional probabilities.
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