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Definition 1 A matching M in a graph G(V, E) is a subset of the edge set E such that no
two edges in M are incident on the same vertex, i.e. if {w, x}, {y, z} ∈ M , then the vertices
w, x, y, z are distinct.

The size of a matching M is the number of edges in M . For a graph G(V, E), a matching of
maximum size is called a maximum matching.

Definition 2 If M is a matching in a graph G, a vertex v is said to be M -saturated if there
is an edge in M incident on v. Vertex v is said to be M-unsaturated if there is no edge in
M incident on v.

If G(V1, V2, E) is a bipartite graph than a matching M of G that saturates all the vertices
in V1 is called a complete matching (also called a perfect matching).

When does a bipartite graph have a complete matching ? Given a graph, if we wanted to
prove that the graph has a complete matching, we can simply give the edges in the matching.
On the other hand, how do you prove that a graph has no complete matching ? In this note,
we state and prove Hall’s theorem which gives a necessary and sufficient condition for the
existence of a complete matching in a bipartite graph.

Before we state Hall’s theorem, we will need some definitions and preliminaries.

Definition 3 Given a matching M in graph G, an M-alternating path (cycle) is a path
(cycle) in G whose edges are alternately in M and outside of M (i.e. if an edge of the path
is in M , the next edge is outside M and vice versa). An M-alternating path whose end
vertices are M-unsaturated is called an M-augmenting path.

Lemma 1 If M is a maximum matching in a graph G(V, E), there can be no M-augmenting
paths in G.

Proof: Assume, for contradiction, that there exists an M -augmenting path P . Then we
can flip the edges of P to obtain a new matching by removing the edges of P ∩M and adding
the edges of P ∩ M̄ . More formally, we set M ′ = M ∪ (P ∩ M̄ ) \ (P ∩M). It is easy to verify
that M ′ is indeed a valid matching in G. Further, |M ′| = |M | + 1. This contradicts the fact
that M is a maximum matching.
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Given a bipartite graph G(V1, V2, E), and a subset of vertices S ⊆ V1, the neighborhood
N(S) is the subset of vertices of V2 that are adjacent to some vertex in S, i.e.

N(S) = {v ∈ V2 : ∃u ∈ S, (u, v) ∈ E}

If a bipartite graph has a complete matching saturating V1, it is easy to see that |S| ≤
|N(S)| for every subset S ⊆ V1. Amazingly, this condition is also sufficient to guarantee the
existence of a complete matching.

Theorem 1 (Hall’s Theorem) Let G(V1, V2, E) be a bipartite graph with |V1| ≤ |V2|. Then
G has a complete matching saturating every vertex of V1 iff |S| ≤ |N(S)| for every subset
S ⊆ V1.

Proof: First we prove that the condition of the theorem is necessary. If G has a complete
matching M and S is any subset of V1, every vertex in S is matched by M into a different
vertex in N(S), so that |S| ≤ |N(S)|.

Now we prove that the condition is sufficient. Suppose that |S| ≤ |N(S)| for every subset
S ⊆ V1. Assume for contradiction that G has no complete matching. Let M be a maximum
matching, i.e. a matching that saturates the maximum number of vertices in V1. Since M is
not complete, there exists an M -unsaturated vertex s in V1. Let Z be the set of vertices of
G reachable from s by M -alternating paths. Since M is a maximum matching, there are no
M -augmenting paths among these (by Lemma 1). Let S = Z ∩ V1 and T = Z ∩ V2. Then,
every vertex of T is matched under M to some vertex of S −{s} and every vertex of S −{s}
is matched under M to some vertex of T . Thus |T | = |S| − 1. Also, T = N(S). Thus S is
a subset of V1 such that |N(S)| = |S| − 1, giving a contradiction. This proves the reverse
direction.

2


