
1

09/30/04

Assignment 2
Non-preemptive scheduling

COS 318 - Operating System

Fall 2005

09/30/05

Parts of the system you will complete

 Context Switch mechanism
 Process Control Block (PCB)
 System Call mechanism
 User and Thread Stacks
 Synchronization Primitives

2

09/30/05

Context Switch Mechanism

 When do context switches occur in a
nonpreemptive system?

 What needs to be saved when you switch
contexts?

 Where to save it?
– Stack?
– PCB?

09/30/05

Process Control Block (PCB)

 File: kernel.h
 What belongs in the PCB?

– next, previous
 What else should go in the PCB?

– Prepare your pcb_t for the design review

3

09/30/05

System Call Mechanism

 How does a process get services from
the kernel?
– For this assignment we’ll use a special

function call - a “jump table”
– For later assignments we’ll use Interrupt/trap

mechanism

09/30/05

System Call Mechanism (continued)

 entry.S defines kernel_entry()
 At runtime, load the address of

kernel_entry() into memory location 0xf00.
 To do this:

– First
 #define ENTRY_POINT (void(**)(int))0xf00

– To load
 *entry_point = kernel_entry

– Declare the following in syslib.c
 void (**entry_point)(int)=ENTRY_POINT

4

09/30/05

System Call Mechanism (continued)

 The following diagram shows the
kernel_entry in the memory

0x1000

kernel_entry()
0xf00

09/30/05

Stacks

 How many stacks?
– 2 per process, 1 pre thread. Why?

 Where to put them in memory?
– Upper limit: 640K (= 0xa0000)
– Suggestion: between 0x10000 and 0x20000
– See memory layout on the next slide

 Size of each stack:
– 4KB should be fine.

5

09/30/05

Memory Layout

BIOS

Kernel and
 Processes

Bootblock

Video RAM

0x01000

0x07C00

0xA0000
0xB8000

Stacks
0x10000

0x20000

09/30/05

Synchronization

 Locks are used by threads
 Many threads can try to acquire a lock

– Need to maintain queue of threads waiting for a lock.
– Where is this queue stored?

 Lock_init()
 Lock_acquire()

– 1. Check lock
– 2. Do we get the lock? If so, Great!
– 3. If not, block.

 Lock_release()

6

09/30/05

A little more assembly

 See guide on course page
http://linuxassembly.org/resources.html
http://linuxassembly.org/articles/rmiyagi-inline-asm.txt

 ask google.

 To access a C variable in inline assembly
– asm volatile(“statements”:output_regs:input_regs:used_regs);

 Examples
– asm volatile(“movl %%esp,%0”:”=q”(cur_running->stack));
– asm volatile(“movl %0,%%esp”::”q”(cur_running->stack));

 Or, you can add utility functions to entry.S

09/30/05

Design Review

 Process Control Block (PCB)
– What additional information is stored here?

 Context Switching
– Be able to explain the process of changing contexts
– This applies to yield or system calls.

 Stacks
– How are stacks used within your design?

 Synchronization
– What additional members are needed for lock_t?

7

09/30/05

Some more hints for this assignment
1. Flat Address Space

 The bootblock code switches to protected
mode. It also sets up the CS, DS, and other
segment registers so that you can use the
entire memory using just registers like eax. Do
NOT modify the segment registers. You have
access to the first 1MB of memory which
includes the video-memory area(0xB8000). To
be safe make sure your code, data, and stacks
reside within the first 640KB of memory.
(0x100000)

09/30/05

Some more hints for this assignment
2. Synchronization

 The synchronization primitives can only be
used by threads within the kernel. You will
notice that there are two functions block() and
unblock() in the kernel that are to be used by
the synchronization code. This has been done
since blocking a process is not specific to
locks, but is a general purpose service that the
kernel should support.

