

 1

Project 6: File Systems

Overview
 Write a UNIX-like hierarchical FS

 (implement various system calls)
 Completes the OS course
 Final abstraction

 Expose files and directories instead of raw
disk blocks

 Offers a much more ‘familiar’ environment

 2

Global view of Disk Layout

System calls:
 init(): OS initialization
 mkfs: Formatting
 open: file creation
 close, read, write, lseek: file access
 link, unlink: associate dirEntry to inode (or

not)
 mkdir, chdir, rmdir: directory stuff
 stat: information about a file or directory

 3

fs_init() vs. fs_mkfs()
 What needs to be done where:

 fs_init() - initialization for whole system
 fs_mkfs() - initialization for the FS on disk

 Imagine two disks in your system
 When do you:

 Initialize the file descriptor table?
 Set bitmaps and inodes to be free?
 Initialize currentInode (correspond to “/”)
 ‘mount’ the filesystem?

Formatting
 mkfs() creates the filesystem.

 Fill in the superblock structure, write to disk
 Mark inodes and data blocks to be free
 Create root directory

 In other words: formats the disk
 fsck() checks integrity of file system

 Provided

 4

File Creation / Deletion
 open(): Create file if it does not exist

 link(): Hard link to a file
 Create a link to an existing file
 Allows multiple locations in the FS point to

the same file on disk
 unlink: Delete a file if link count == 0

 delete directory entry

File Access
 read()
 write()
 lseek(): move file pointer on open

descriptors
 close()

 5

Directories

 mkdir(): make a directory
 create an entry in parent directory
 create two directories: “.”, “..”

 rmdir: remove directory
 chdir: change the $CWD

 For relative path names

Directories (cont)

 Can be implemented like a file
 Contains a list of dirEntry structures that

contain (filename, inode number) pairs

 6

Global view of Disk Layout

Super Block

 Meta data about layout of the disk
 Magic numbers/name
 Size of partition/disk
 Number of inodes
 Number of data blocks
 Sectors where inodes or data blocks begin
 Etc…

 7

Superblock Structure

Inode

 Associates disk blocks with files
 Directory entries point to Inodes
 Structure for book keeping

 List of blocks in file
 Type (file or directory)
 Count of hard links
 Permission/Owner information

 8

Structure
 typedef struct {

 short type;
 char links;
 int size;
 int direct[NUM_DIRECT_BLOCKS];
 int indirect[NUM_INDIRECT_BLOCKS];
} inode;

Inode direct/indirect lookup

 9

Inode (cont)

 Advantages
 Simple
 Fast access for small files
 Support for large files
 Support for sparse files

Allocation Bitmap

 There is a one-to-one mapping
 Bits in allocation bitmap --> data blocks

 For simplicity use a ByteMap
 fs_fsck() expects bytes (0 or 1)
 Document any changes you make to fsck()

 10

Example: mkdir()
int fs_mkdir(char *file_name) {
if (file_name exists) return ERROR;
/* allocate data block */
/* allocate inode */
/* add directory entries for ‘.’, ‘..’ */
/* set inode entries appropriately *
/* update parent directory */
return SUCCESS

}

Development

 Check Errors
 Many boundary conditions
 So, be thorough

 Feel free to add more files
 Abstraction is your friend
 Layer between disk and files

 11

Doing the Assignment
 Most development in Linux

 Use a file to simulate a disk (make lnxsh)
 Code is provided (*Fake files)
 Should be able to move right over to your

OS
 Shell supports

 System calls for File System
 Commands like “ls”, “cat”, “create”

