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3.1 Elementary Sorts

Reference:  Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.
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Basic Terms

Ex:  student record in a University.

Sort:  rearrange sequence of objects into ascending order.
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Rules of the Game

Goal.  Write robust sorting library that can sort any type of data into

sorted order using the data type's natural order.

Callbacks.

! Client passes array of objects to sorting routine.

! Sorting routine calls back object's comparison function as needed.

Implementing callbacks.

! Java:  interfaces.

! C:  function pointers.

! C++:  functors.

! C#:  delegates.

! Lisp:  first class functions.

client data type

sorting library

construct

callbacks

compare

sort
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Comparable Interface

Comparable interface.  Class is required to provide a method compareTo

so that v.compareTo(w)returns:

! A negative integer if v is less than w.

! A positive integer if v is greater than w.

! Zero if v is equal to w.

Consistency.  It is the programmer's responsibility to ensure that

compareTo specifies a total order.

! If a < b and b < c, then a < c.   [transitivity]

! Exactly one holds:  a < b, b < a, a = b. [trichotomy]

Built-in comparable types:  String, Double, Integer, Date, File.

User-defined types:  easy to implement Comparable interface.
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Implementing the Comparable Interface:  Date

public class Date implements Comparable<Date> {

   private int month, day, year;

   public Date(int m, int d, int y) {

      month = m;

      day   = d;

      year  = y;

   }

   public int compareTo(Date b) {

      Date a = this;

      if (a.year  < b.year ) return -1;

      if (a.year  > b.year ) return +1;

      if (a.month < b.month) return -1;

      if (a.month > b.month) return +1;

      if (a.day   < b.day  ) return -1;

      if (a.day   > b.day  ) return +1;

      return 0;

   }

}

only compare dates
to other dates
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Two Array Sorting Abstractions

Helper functions.  Refer to data only through two operations.

! Less.  Is v less than w ?

! Exchange.  Swap objects in array at index i with the one at index j.

private static boolean less(Comparable v, Comparable w) {

   return v.compareTo(w) < 0;

}

private static void exch(Comparable[] a, int i, int j) {

      Comparable t = a[i];

      a[i] = a[j];

      a[j] = t;

   }
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Check if Sorted

Example usage.  Is the input sorted?

public static boolean isSorted(Comparable[] a) {

   for (int i = 1; i < a.length; i++)

      if (less(a[i], a[i-1]))

         return false;

   return true;

}
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Insertion Sort



9

Insertion Sort

Insertion sort.

! Scans from left to right.

! Element to right of ! are not touched.

! Invariant:  elements to the left of ! are in ascending order.

! Inner loop:  repeatedly swap element ! with element to its left.

in order not yet seen

!

in order not yet seen

!!!!
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Insertion Sort Example
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Insertion Sort:  Java Implementation

public static void sort(Comparable[] a) {

   int N = a.length;

   for (int i = 0; i < N; i++)

      for (int j = i; j > 0; j--)

         if (less(a[j], a[j-1])) exch(a, j, j-1);

         else break;

}
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Selection Sort
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Selection Sort

Selection sort.

! ! scans from left to right.

! Elements to the left of ! are fixed and in ascending order.

! No element to left of ! is larger than any element to its right.

in final order !
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Selection Sort Example
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Selection Sort Inner Loop:  Maintaining the Invariant

Selection sort inner loop.

! Identify index of minimum item.

! Exchange into position.

int min = i;

for (int j = i+1; j < N; j++)

   if (less(a[j], a[min]))

      min = j;

exch(a, i, min);

!

! !

! !
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Selection Sort:  Java Implementation

public class Selection {

   private static boolean less(Comparable v, Comparable w) {

      return v.compareTo(w) < 0;

   }

   private static void exch(Comparable[] a, int i, int j) {

      Comparable swap = a[i];

      a[i] = a[j];

      a[j] = swap;

   }

   public static void sort(Comparable a[]) {

      for (int i = 0; i < a.length; i++) {

         int min = i;

         for (int j = i+1; j < a.length; j++)
            if (less(a[j], a[min]))

               min = j;

         exch(a, i, min);

      }

   }

}

selection sort a[]

swap references a[i] and a[j]

is v less than w?
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import java.io.File;

public class Files {

   public static void main(String[] args) {

      File directory = new File(args[0]);

      File[] files = directory.listFiles();

      Selection.sort(files);

      for (int i = 0; i < files.length; i++)

         System.out.println(files[i]);

   }

}

% java Files .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class

Selection.java

Shell.class

Shell.java

ShellX.class

ShellX.java

index.html

Selection Sort:  Sample Application

List files.  List the files in the current directory, sorted by file name.
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Analysis
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Performance for Randomly Ordered Files

Selection.

! Always search through right part.

! (1 + 2 + ... + N) "  N2 / 2 compares.

"  N exchanges.

Insertion.

! Each element moves halfway back.

! (1 + 2 + ... + N) / 2 "  N2 / 4 compares.

     "  N2 / 4 exchanges.

Bottom line:  insertion, selection similar.
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Sorting Challenges
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Sorting Challenge 1

Problem:  sort a file of huge records with tiny keys.

Ex:  reorganizing your MP3 files.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort
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Sorting Challenge 2

Problem:  sort a huge randomly-ordered file of small records.

Ex:  process transaction records for a phone company.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort
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Sorting Challenge 3

Problem:  sort a huge number of tiny files (each file is independent)

Ex:  daily customer transaction records.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort
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Sorting Challenge 4

Problem:  sort a huge file that is already almost in order.

Ex:  re-sort a huge database after a few changes.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort
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Visual Sorting Puzzle

1. Insertion sort.

2. Selection sort.

3. Bubble sort.

random

sorted

reverse

sorted


