
3.1 Elementary Sorts

Ex: student record in a University.

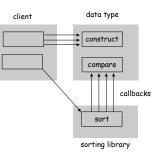
Sort: rearrange sequence of objects into ascending order.

Aaron	4	A	664-480-0023	097 Little
Andrews	3	A	874-088-1212	121 Whitman
Battle	4	С	991-878-4944	308 Blair
Chen	2	A	884-232-5341	11 Dickinson
Fox	1	A	243-456-9091	101 Brown
Furia	3	A	766-093-9873	22 Brown
Gazsi	4	в	665-303-0266	113 Walker
Kanaga	3	в	898-122-9643	343 Forbes
Rohde	3	A	232-343-5555	115 Holder
Quilici	1	с	343-987-5642	32 McCosh

Reference: Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Robert Sedgewick and Kevin Wayne · Copyright © 2005 · http://www.Princeton.EDU/~cos226

Rules of the Game


Goal. Write robust sorting library that can sort any type of data into sorted order using the data type's natural order.

Callbacks.

- Client passes array of objects to sorting routine.
- Sorting routine calls back object's comparison function as needed.

Implementing callbacks.

- Java: interfaces.
- C: function pointers.
- C++: functors.
- C#: delegates.
- Lisp: first class functions.

Comparable Interface

Comparable interface. Class is required to provide a method compareTo so that v.compareTo(w) returns:

- . A negative integer if ${\tt v}$ is less than ${\tt w}.$
- A positive integer if ${\tt v}$ is greater than ${\tt w}.$
- Zero if ${\tt v}$ is equal to ${\tt w}.$

Consistency. It is the programmer's responsibility to ensure that compareTo specifies a total order.

- If a < b and b < c, then a < c. [transitivity]
- Exactly one holds: a < b, b < a, a = b. [trichotomy]

Built-in comparable types: String, Double, Integer, Date, File.

User-defined types: easy to implement Comparable interface.

Implementing the Comparable Interface: Date

```
public class Date implements Comparable<Date> {
   private int month, day, year;
                                           only compare dates
   public Date(int m, int d, int y) {
                                           to other dates
      month = m;
      day = d;
     year = y;
   }
   public int compareTo(Date b) {
     Date a = this;
     if (a.year < b.year ) return -1;</pre>
     if (a.year > b.year ) return +1;
     if (a.month < b.month) return -1;</pre>
     if (a.month > b.month) return +1;
     if (a.day < b.day ) return -1;</pre>
     if (a.day > b.day ) return +1;
      return 0;
   }
}
```

Two Array Sorting Abstractions

Helper functions. Refer to data only through two operations.

• Less. Is v less than w ?

5

7

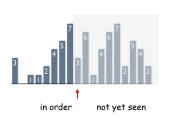
```
private static boolean less(Comparable v, Comparable w) {
   return v.compareTo(w) < 0;
}</pre>
```

Exchange. Swap objects in array at index i with the one at index j.

```
private static void exch(Comparable[] a, int i, int j) {
    Comparable t = a[i];
    a[i] = a[j];
    a[j] = t;
}
```

Check if Sorted

Example usage. Is the input sorted?


```
public static boolean isSorted(Comparable[] a) {
  for (int i = 1; i < a.length; i++)
      if (less(a[i], a[i-1]))
          return false;
  return true;
}</pre>
```

Insertion Sort

Insertion Sort

Insertion sort.

- Scans from left to right.
- Element to right of \uparrow are not touched.
- Invariant: elements to the left of \uparrow are in ascending order.
- Inner loop: repeatedly swap element \uparrow with element to its left.

9

11

Insertion Sort Example

S O R T E X A M P L E

0	S	R	Т	Ε	X	A	Μ	Ρ	L	Е
0	R	S	Т	Ε	X	A	\mathbb{M}	Ρ	L	Е
0	R	S	T	Ε	X	A	\mathbb{M}	Ρ	L	Ε
E	_								L	Ε
Ε					-				L	
A	E	0	R	ន	т	X	\mathbb{M}	Ρ	L	Ε
A	E	M	0	R	S	т	х	Ρ	L	Ε
A	E	Μ	0	P	R	S	т	х	L	Е
A	E	Ŀ	М	0	Ρ	R	ន	т	х	Е
A	E	E	L	м	0	Ρ	R	S	т	х
-		\sim								

Insertion Sort: Java Implementation

Selection Sort

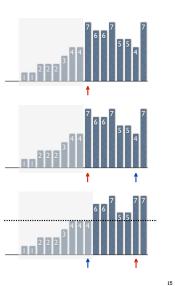
10

Selection Sort

Selection sort.

- † scans from left to right.
- Elements to the left of \uparrow are fixed and in ascending order.
- No element to left of \uparrow is larger than any element to its right.

Selection Sort Inner Loop: Maintaining the Invariant


Selection sort inner loop.

. Identify index of minimum item.

```
int min = i;
for (int j = i+1; j < N; j++)
if (less(a[j], a[min]))
min = j;
```

Exchange into position.

exch(a, i, min);

13

Selection Sort Example

Selection Sort: Java Implementation

14

16

ublic class Selection {	
<pre>private static boolean less(Comparab: return v.compareTo(w) < 0; }</pre>	<pre>le v, Comparable w) { is v less than w?</pre>
<pre>private static void exch(Comparable[; Comparable swap = a[i]; a[i] = a[j]; a[j] = swap; }</pre>] a , int i , int j) {
<pre>public static void sort(Comparable a for (int i = 0; i < a.length; i++) int min = i; for (int j = i+1; j < a.length if (less(a[j], a[min])) min = j; exch(a, i, min); } }</pre>) {

List files. List the files in the current directory, sorted by file name.

Analysis

Performance for Randomly Ordered Files

Selection.

- Always search through right part.
- $(1 + 2 + ... + N) \approx N^2 / 2$ compares.
 - ≈ N exchanges.

SORTEXAMPLE

SORTEXAMPLE

A O R TEXSMPLE A E R T O X S M P L E

A E E T O X S M P L R A E E L O X S M P T R

AEELMXSOPTR

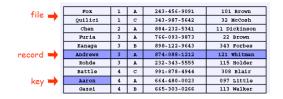
Insertion.

- Each element moves halfway back.
- $(1 + 2 + ... + N) / 2 \approx N^2 / 4$ compares. $\approx N^2 / 4$ exchanges.

Bottom line: insertion, selection similar.

S	0	R	т	Е	х	A	М	P	L	Е
0	s	R	Т	E	X	Α	M	P		E
0	R	s	\mathbf{T}	E	Х	A	М	P		E
	R	S	T	E	X	A	М	P		Ε
E	0	R	s	т	Х	Α	М	P		Ε
Ε		R	S	T	X	A	М	P		Ε
	в	0	R	s	т	х	М	P		Ε
A	Е	M	0	R	s	т	х	P		Ε
Α	B	М		P	R	s	т	х		Ε
A	B	L	M	0	P	R	s	т	х	E
A	Ε	E	L	М	0	P	R	s	т	X
A	Е	E	L	М	0	P	R	s	т	х

19


Sorting Challenges

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys. Ex: reorganizing your MP3 files.

Which sorting method to use?

- 1. system sort
- 2. insertion sort
- 3. selection sort

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records. Ex: process transaction records for a phone company.

Which sorting method to use?

- 1. system sort
- 2. insertion sort
- 3. selection sort

file 📥	Fox	1	A	243-456-9091	101 Brown
	Quilici	1	с	343-987-5642	32 McCosh
	Chen	2	A	884-232-5341	11 Dickinson
	Furia	3	A	766-093-9873	22 Brown
	Kanaga	3	в	898-122-9643	343 Forbes
record 🔿	Andrews	3	A	874-088-1212	121 Whitman
	Rohde	3	A	232-343-5555	115 Holder
	Battle	4	С	991-878-4944	308 Blair
key 븆	Aaron	4	A	664-480-0023	097 Little
	Gazsi	4	в	665-303-0266	113 Walker

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent) Ex: daily customer transaction records.

Which sorting method to use?

- 1. system sort
- 2. insertion sort
- 3. selection sort

file 🛶 🗕	Fox	1	A	243-456-9091	101 Brown
	Quilici	1	с	343-987-5642	32 McCosh
	Chen	2	A	884-232-5341	11 Dickinson
	Furia	3	A	766-093-9873	22 Brown
	Kanaga	3	в	898-122-9643	343 Forbes
record 🔿	Andrews	3	A	874-088-1212	121 Whitman
, , , ,	Rohde	3	A	232-343-5555	115 Holder
	Battle	4	С	991-878-4944	308 Blair
key 븆 🖡	Aaron	4	A	664-480-0023	097 Little
1.1.1	Gazsi	4	в	665-303-0266	113 Walker

Sorting Challenge 4

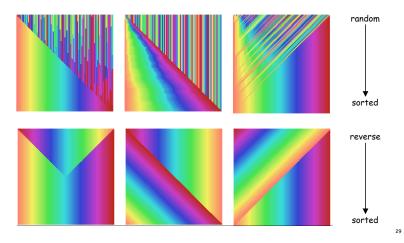
Problem: sort a huge file that is already almost in order. Ex: re-sort a huge database after a few changes.

Which sorting method to use?

- 1. system sort
- 2. insertion sort
- 3. selection sort

	Fox	1		243-456-9091	101 Brown
file 📥		1	A		
	Quilici	1	с	343-987-5642	32 McCosh
	Chen	2	A	884-232-5341	11 Dickinson
	Furia	3	A	766-093-9873	22 Brown
	Kanaga	3	В	898-122-9643	343 Forbes
record 🔿	Andrews	3	A	874-088-1212	121 Whitman
· · · · · ·	Rohde	3	A	232-343-5555	115 Holder
	Battle	4	с	991-878-4944	308 Blair
key 븆	Aaron	4	A	664-480-0023	097 Little
	Gazsi	4	в	665-303-0266	113 Walker

21


23

Visual Sorting Puzzle

1. Insertion sort.

2. Selection sort.

3. Bubble sort.

