
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

3.1 Elementary Sorts

Reference: Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Basic Terms

Ex: student record in a University.

Sort: rearrange sequence of objects into ascending order.

3

Rules of the Game

Goal. Write robust sorting library that can sort any type of data into

sorted order using the data type's natural order.

Callbacks.

! Client passes array of objects to sorting routine.

! Sorting routine calls back object's comparison function as needed.

Implementing callbacks.

! Java: interfaces.

! C: function pointers.

! C++: functors.

! C#: delegates.

! Lisp: first class functions.

client data type

sorting library

construct

callbacks

compare

sort

4

Comparable Interface

Comparable interface. Class is required to provide a method compareTo

so that v.compareTo(w)returns:

! A negative integer if v is less than w.

! A positive integer if v is greater than w.

! Zero if v is equal to w.

Consistency. It is the programmer's responsibility to ensure that

compareTo specifies a total order.

! If a < b and b < c, then a < c. [transitivity]

! Exactly one holds: a < b, b < a, a = b. [trichotomy]

Built-in comparable types: String, Double, Integer, Date, File.

User-defined types: easy to implement Comparable interface.

5

Implementing the Comparable Interface: Date

public class Date implements Comparable<Date> {

 private int month, day, year;

 public Date(int m, int d, int y) {

 month = m;

 day = d;

 year = y;

 }

 public int compareTo(Date b) {

 Date a = this;

 if (a.year < b.year) return -1;

 if (a.year > b.year) return +1;

 if (a.month < b.month) return -1;

 if (a.month > b.month) return +1;

 if (a.day < b.day) return -1;

 if (a.day > b.day) return +1;

 return 0;

 }

}

only compare dates
to other dates

6

Two Array Sorting Abstractions

Helper functions. Refer to data only through two operations.

! Less. Is v less than w ?

! Exchange. Swap objects in array at index i with the one at index j.

private static boolean less(Comparable v, Comparable w) {

 return v.compareTo(w) < 0;

}

private static void exch(Comparable[] a, int i, int j) {

 Comparable t = a[i];

 a[i] = a[j];

 a[j] = t;

 }

7

Check if Sorted

Example usage. Is the input sorted?

public static boolean isSorted(Comparable[] a) {

 for (int i = 1; i < a.length; i++)

 if (less(a[i], a[i-1]))

 return false;

 return true;

}

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Insertion Sort

9

Insertion Sort

Insertion sort.

! Scans from left to right.

! Element to right of ! are not touched.

! Invariant: elements to the left of ! are in ascending order.

! Inner loop: repeatedly swap element ! with element to its left.

in order not yet seen

!

in order not yet seen

!!!!

10

Insertion Sort Example

11

Insertion Sort: Java Implementation

public static void sort(Comparable[] a) {

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (less(a[j], a[j-1])) exch(a, j, j-1);

 else break;

}

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Selection Sort

13

Selection Sort

Selection sort.

! ! scans from left to right.

! Elements to the left of ! are fixed and in ascending order.

! No element to left of ! is larger than any element to its right.

in final order !

14

Selection Sort Example

15

Selection Sort Inner Loop: Maintaining the Invariant

Selection sort inner loop.

! Identify index of minimum item.

! Exchange into position.

int min = i;

for (int j = i+1; j < N; j++)

 if (less(a[j], a[min]))

 min = j;

exch(a, i, min);

!

! !

! !

16

Selection Sort: Java Implementation

public class Selection {

 private static boolean less(Comparable v, Comparable w) {

 return v.compareTo(w) < 0;

 }

 private static void exch(Comparable[] a, int i, int j) {

 Comparable swap = a[i];

 a[i] = a[j];

 a[j] = swap;

 }

 public static void sort(Comparable a[]) {

 for (int i = 0; i < a.length; i++) {

 int min = i;

 for (int j = i+1; j < a.length; j++)
 if (less(a[j], a[min]))

 min = j;

 exch(a, i, min);

 }

 }

}

selection sort a[]

swap references a[i] and a[j]

is v less than w?

17

import java.io.File;

public class Files {

 public static void main(String[] args) {

 File directory = new File(args[0]);

 File[] files = directory.listFiles();

 Selection.sort(files);

 for (int i = 0; i < files.length; i++)

 System.out.println(files[i]);

 }

}

% java Files .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class

Selection.java

Shell.class

Shell.java

ShellX.class

ShellX.java

index.html

Selection Sort: Sample Application

List files. List the files in the current directory, sorted by file name.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Analysis

19

Performance for Randomly Ordered Files

Selection.

! Always search through right part.

! (1 + 2 + ... + N) " N2 / 2 compares.

" N exchanges.

Insertion.

! Each element moves halfway back.

! (1 + 2 + ... + N) / 2 " N2 / 4 compares.

 " N2 / 4 exchanges.

Bottom line: insertion, selection similar.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Sorting Challenges

21

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys.

Ex: reorganizing your MP3 files.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort

23

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records.

Ex: process transaction records for a phone company.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort

25

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent)

Ex: daily customer transaction records.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort

27

Sorting Challenge 4

Problem: sort a huge file that is already almost in order.

Ex: re-sort a huge database after a few changes.

Which sorting method to use?

1. system sort

2. insertion sort

3. selection sort

29

Visual Sorting Puzzle

1. Insertion sort.

2. Selection sort.

3. Bubble sort.

random

sorted

reverse

sorted

