
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

4.2 Hashing

2

Optimize Judiciously

Reference: Effective Java by Joshua Bloch.

"More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including
blind stupidity." - William A. Wulf

"We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil." - Donald E. Knuth

"We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until you have
 a perfectly clear and unoptimized solution."
 - M. A. Jackson

3

Hashing: Basic Plan.

Save items in a key-indexed table. Index is a function of the key.

Hash function. Method for computing table index from key.

Collision resolution strategy. Algorithm and data structure to handle

two keys that hash to the same index.

Classic space-time tradeoff.

! No space limitation: trivial hash function with key as address.

! No time limitation: trivial collision resolution = sequential search.

! Limitations on both time and space: hashing (the real world).

4

Choosing a Good Hash Function

Goal: scramble the keys.

! Efficiently computable.

! Each table position equally likely for each key.

Ex: Social Security numbers.

! Bad: first three digits.

! Better: last three digits.

Ex: date of birth.

! Bad: birth year.

! Better: birthday.

Ex: phone numbers.

! Bad: first three digits.

! Better: last three digits.

573 = California, 574 = Alaska

assigned in chronological order within a
given geographic region

thoroughly researched problem

5

Hash Function: String Keys

Java string library hash functions.

! Equivalent to h = 31L-1s0 + . . . + 312sL-3 + 31sL-2 + sL-1.

! Horner's method to hash string of length L: O(L).

Q. Can we reliably use (h % M) as index for table of size M?

A. No. Instead, use (h & 0x7fffffff) % M.

public int hashCode() {

 int hash = 0;

 for (int i = 0; i < length(); i++)

 hash = (31 * hash) + s[i];

 return hash;

}

s = "call";

h = s.hashCode();

hash = h % M;

3045982

7121 8191
ith character of s

6

hashCode

Hash code. For any references x and y:

! Repeated calls to x.hashCode() must return the same value

provided no information used in equals comparison has changed.

! If x.equals(y) then x and y must have the same hash code.

Default implementation: memory address of x.

Customized implementations: String, URL, Integer, Date.

"consistent with equals"

7

Implementing HashCode: US Phone Numbers

Phone numbers: (609) 867-5309.

area code exchange extension

public final class PhoneNumber {

 private final int area, exch, ext;

 public PhoneNumber(int area, int exch, int ext) {

 this.area = area;

 this.exch = exch;

 this.ext = ext;

 }

 public boolean equals(Object y) { // as before }

 public int hashCode() {

 return 10007 * (area + 1009 * exch) + ext;

 }
}

8

Collisions

Collision = two keys hashing to same value.

! Essentially unavoidable.

! Birthday problem: how many people will have to enter a room until

two have the same birthday? 23

! With M hash values, expect a collision after sqrt(! ! M) insertions.

Conclusion: can't avoid collisions unless

you have a ridiculous amount of memory.

Challenge: efficiently cope with collisions.

9

Collision Resolution: Two Approaches.

Separate chaining.

! M much smaller than N.

! " N / M keys per table position.

! Put keys that collide in a list.

! Need to search lists.

Open addressing.

! M much larger than N.

! Plenty of empty table slots.

! When a new key collides, find next

empty slot and put it there.

! Complex collision patterns.

jocularly seriously

listen

browsing

st[0]

st[1]

st[2]

st[8190]

suburban untravelledst[3] considerating

null

M = 8191, N = 15000

listen

browsing

st[2]

st[3]

st[4]

st[30001]

suburban

st[5]

null

jocularly

seriously

st[0]

st[1]

null

M = 30001, N = 15000
10

Separate Chaining

Separate chaining: array of M linked lists.

! Hash: map key to integer i between 0 and M-1.

! Insert: put at front of ith chain (if not already there).

! Search: only need to search ith chain.

! Running time: proportional to length of chain.

jocularly seriously

listen

browsing

st[0]

st[1]

st[2]

st[8190]

3untravelled

3suburban

5017ishmael

0seriously

.. . .

3480

7121

hash

me

call

key

suburban untravelledst[3] considerating

null

M = 8191

11

Symbol Table: Separate Chaining

public class ListHashST<Key, Value> {

 private int M = 8191;

 private Node[] st = new Node[M];

 private static class Node {
 Object key;

 Object val;

 Node next;

 Node(Object key, Object val, Node next) {

 this.key = key;

 this.val = val;

 this.next = next;

 }

 }

 private int hash(Key key) {

 return (key.hashCode() & 0x7fffffff) % M;

 }
between 0 and M-1

hex

no generic array creation in Java

12

Symbol Table: Separate Chaining Implementation (cont)

public void put(Key key, Value val) {

 int i = hash(key);

 for (Node x = st[i]; x != null; x = x.next) {

 if (key.equals(x.key)) {

 x.val = val;

 return;

 }

 }

 st[i] = new Node(k, val, st[i]);

}

public Value get(Key key) {

 int i = hash(k);

 for (Node x = st[i]; x != null; x = x.next)

 if (key.equals(x.key))

 return (Value) x.val;

 return null;

}

check if key already present

insert at front of chain

13

Separate Chaining Performance

Separate chaining performance.

! Search cost is proportional to length of chain.

! Trivial: average length = N / M.

! Worst case: all keys hash to same chain.

Theorem. Let # = N / M > 1 be average length of list. For any t > 1,

probability that list length > t # is exponentially small in t.

Parameters.

! M too large $ too many empty chains.

! M too small $ chains too long.

! Typical choice: # = N / M " 10 $ constant-time search/insert.

depends on hash map being random map

14

Advantages: fast insertion, fast search.

Disadvantage: hash table has fixed size.

Sorted array

Implementation

Unsorted list

log N

Search

N

N

Insert

N

log N

Search

N / 2

N / 2

Insert

N

N / 2

Delete

N / 2

Worst Case Average Case

N

Delete

N

Separate chaining N N 1* 1* 1*N

* assumes hash function is random

Symbol Table: Implementations Cost Summary

fix: use repeated doubling, and rehash all keys

15

Linear Probing

Linear probing: array of size M.

! Hash: map key to integer i between 0 and M-1.

! Insert: put in slot i if free, if not try i+1, i+2, etc.

! Search: search slot i, if occupied but no match, try i+1, i+2, etc.

Cluster.

! Contiguous block of items.

! Search through cluster using elementary algorithm for arrays.

typically twice as many slots as elements

A S E A R C H I N G X M P

16

Symbol Table: Linear Probing Implementation

public class ArrayHashST<Key, Val> {

 private int M = 30001;

 private Key[] keys = (Key[]) new Object[M];

 private Val[] vals = (Val[]) new Object[M];

 private int hash(Key key) { // as before }

 public void put(Key key, Val val) {

 int i;

 for (i = hash(key); keys[i] != null; i = (i+1) % M)

 if (keys[i].equals(key)) break;

 keys[i] = key;

 vals[i] = val;

 }

 public Val get(Key key) {

 int i;

 for (i = hash(key); keys[i] != null; i = (i+1) % M)

 if (keys[i].equals(key)) break;

 return vals[i];

 }

}

no generic array
creation in Java

17

Linear Probing Performance

Linear probing performance.

! Insert and search cost depend on length of cluster.

! Trivial: average length of cluster = # = N / M.

! Worst case: all keys hash to same cluster.

Theorem. [Knuth 1962] Let # = N / M < 1 be average length of list.

Parameters.

! M too large $ too many empty array entries.

! M too small $ clusters coalesce.

! Typical choice: M " 2N $ constant-time search/insert.

depends on hash map being
random map

but elements more likely to
hash to big clusters

18

Advantages: fast insertion, fast search.

Disadvantage: hash table has fixed size.

Sorted array

Implementation

Unsorted list

log N

Search

N

N

Insert

N

log N

Search

N / 2

N / 2

Insert

N

N / 2

Delete

N / 2

Worst Case Average Case

N

Delete

N

Separate chaining N N 1* 1* 1*N

* assumes hash function is random

Symbol Table: Implementations Cost Summary

fix: use repeated doubling, and rehash all keys

Linear probing N N 1* 1* 1*N

19

Double Hashing

Double hashing. Avoid clustering by using second hash to compute skip

for search.

Hash. Map key to integer i between 0 and M-1.

Second hash. Map key to nonzero skip value k.

Ex: k = 1 + (v mod 97).

Result. Skip values give different search paths for keys that collide.

Best practices. Make k and M relatively prime.

hashCode

20

Double Hashing Performance

Linear probing performance.

! Insert and search cost depend on length of cluster.

! Trivial: average length of cluster = # = N / M.

! Worst case: all keys hash to same cluster.

Theorem. [Guibas-Szemeredi] Let # = N / M < 1 be average length of list.

Parameters.

! M too large $ too many empty array entries.

! M too small $ clusters coalesce.

! Typical choice: M " 2N $ constant-time search/insert.

Disadvantage: delete cumbersome to implement.

depends on hash map being
random map

21

Hashing Tradeoffs

Separate chaining vs. linear probing/double hashing.

! Space for links vs. empty table slots.

! Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.

load factor #

50% 66% 75% 90%

linear
probing

search 1.5 2.0 3.0 5.5

insert 2.5 5.0 8.5 55.5

double
hashing

search 1.4 1.6 1.8 2.6

insert 1.5 2.0 3.0 5.5

22

Hash Table: Java Library

Java has built-in libraries for symbol tables.

! HashMap = linear probing hash table implementation.

Duplicate policy.

! Java HashMap allows null values.

! Our implementations forbid null values.

import java.util.HashMap;

public class HashMapDemo {

 public static void main(String[] args) {

 HashMap<String, String> st = new HashMap <String, String>();

 st.put("www.cs.princeton.edu", "128.112.136.11");

 st.put("www.princeton.edu", "128.112.128.15");

 System.out.println(st.get("www.cs.princeton.edu"));

 }

}

23

Symbol Table: Using HashMap

Symbol table. Implement our interface using HashMap.

import java.util.HashMap;

import java.util.Iterator;

public class ST<Key, Value> implements Iterable<Key> {

 private HashMap<Key, Value> st = new HashMap<Key, Value>();

 public void put(Key key, Value val) {

 if (val == null) st.remove(key);

 else st.put(key, val);

 }

 public Value get(Key key) { return st.get(key); }

 public Value remove(Key key) { return st.remove(key); }

 public boolean contains(Key key) { return st.containsKey(key); }

 public int size() contains(Key ke{ return st.size(); }

 public Iterator<Key> iterator() { return st.keySet().iterator(); }

}

24

Designing a Good Hash Function

Java 1.1 string library hash function.

! For long strings: only examines 8 evenly spaced characters.

! Saves time in performing arithmetic.

! Great potential for bad collision patterns.

public int hashCode() {

 int hash = 0;

 if (length() < 16) {

 for (int i = 0; i < length(); i++)

 hash = (37 * hash) + s[i];

 }

 else {

 int skip = length() / 8;

 for (int i = 0; i < length(); i += skip)

 hash = (37 * hash) + s[i];

 }

 return hash;

} String.java

25

Algorithmic Complexity Attacks

Is the random hash map assumption important in practice?

! Obvious situations: aircraft control, nuclear reactors.

! Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

! Bro server: send carefully chosen packets to DOS the server, using

less bandwidth than a dial-up modem

! Perl 5.8.0: insert carefully chosen strings into associative array.

! Linux 2.4.20 kernel: save files with carefully chosen names.

Reference: http://www.cs.rice.edu/~scrosby/hash

malicious adversary learns your ad hoc hash function
(e.g., by reading Java API) and causes a big pile-up in
single address that grinds performance to a halt

26

Algorithmic Complexity Attacks

Q. How easy is it to break Java's hashCode with String keys?

A. Almost trivial: string hashCode is part of Java 1.5 API.

! Ex: hashCode of "BB" equals hashCode of "Aa".

! Can now create 2N strings of length 2N that all hash to same value!

Possible to fix?

! Security by obscurity. [not recommended]

! Cryptographically secure hash functions.

! Universal hashing.

AaAaAaAa

AaAaAaBB

AaAaBBAa

AaAaBBBB

AaBBAaAa

AaBBAaBB

AaBBBBAa

AaBBBBBB

BBAaAaAa

BBAaAaBB

BBAaBBAa

BBAaBBBB

BBBBAaAa

BBBBAaBB

BBBBBBAa

BBBBBBBB

