
Princeton University
COS 217: Introduction to Programming Systems

Heap Manager: Algorithms for Baseline Implementation

void *HeapMgr_malloc(size_t uiBytes)

(1) If this is the first call of HeapMgr_malloc(), then initialize the heap manager.

(2) Determine the number of units the new chunk should contain.

(3) For each chunk in the free list...

If the current free list chunk is big enough and close to the requested size, then
remove it from the free list and return it. If the current free list chunk is too
big, then split the chunk and return the tail end of it. In the latter case, the
free list need not be altered.

(4) Ask the OS for more memory, and create a new chunk from it. Insert the new chunk at

the end of the free list. If appropriate, coalesce the new chunk and the previous
one. Let the current free list chunk be the last one.

(5) If the current free list chunk is big enough and close to the requested size, then

remove it from the free list and return it. If the current free list chunk is too
big, then split the chunk and return the tail end of it. In the latter case, the free
list need not be altered.

(6) Return NULL.

void HeapMgr_free(void *pvBytes)

(1) Traverse the free list to find the correct spot for the given chunk.

(2) Insert the given chunk into the free list at the correct spot.

(3) If appropriate, coalesce the given chunk and the previous one.

(4) If appropriate, coalesce the given chunk and the next one.

Copyright © 2005 by Robert M. Dondero, Jr.

