
1

Binary Numbers

COS 217

2

Goals of Today’s Lecture
• Binary numbers
o Why binary?
o Converting base 10 to base 2
o Octal and hexadecimal

• Integers
o Unsigned integers
o Integer addition
o Signed integers

• C bit operators
o And, or, not, and xor
o Shift-left and shift-right
o Function for counting the number of 1 bits
o Function for XOR encryption of a message

3

Why Bits (Binary Digits)?
• Computers are built using digital circuits

o Inputs and outputs can have only two values
o True (high voltage) or false (low voltage)
o Represented as 1 and 0

• Can represent many kinds of information
o Boolean (true or false)
o Numbers (23, 79, …)
o Characters (‘a’, ‘z’, …)
o Pixels
o Sound

• Can manipulate in many ways
o Read and write
o Logical operations
o Arithmetic
o …

4

Base 10 and Base 2
• Base 10

o Each digit represents a power of 10
o 4173 = 4 x 103 + 1 x 102 + 7 x 101 + 3 x 100

• Base 2
o Each bit represents a power of 2
o 10110 = 1 x 24 + 0 x 23 + 1 x 22 + 0 x 20 = 22

Divide repeatedly by 2 and keep remainders

12/2 = 6 R = 0
6/2 = 3 R = 0
3/2 = 1 R = 1
1/2 = 0 R = 1
Result = 1100

5

Writing Bits is Tedious for People
• Octal (base 8)

o Digits 0, 1, …, 7
o In C: 00, 01, …, 07

• Hexadecimal (base 16)
o Digits 0, 1, …, 9, A, B, C, D, E, F
o In C: 0x0, 0x1, …, 0xf

0000 = 0 1000 = 8
0001 = 1 1001 = 9
0010 = 2 1010 = A
0011 = 3 1011 = B
0100 = 4 1100 = C
0101 = 5 1101 = D
0110 = 6 1110 = E
0111 = 7 1111 = F

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9

6

Representing Colors: RGB
• Three primary colors

o Red
o Green
o Blue

• Strength
o 8-bit number for each color (e.g., two hex digits)
o So, 24 bits to specify a color

• In HTML, on the course Web page
o Red: <i>Symbol Table Assignment Due</i>
o Blue: <i>Fall Recess</i>

• Same thing in digital cameras
o Each pixel is a mixture of red, green, and blue

7

Storing Integers on the Computer
• Fixed number of bits in memory

o Short: usually 16 bits
o Int: 16 or 32 bits
o Long: 32 bits

• Unsigned integer
o No sign bit
o Always positive or 0
o All arithmetic is modulo 2n

• Example of unsigned int
o 00000001 1
o 00001111 15
o 00010000 16
o 00100001 33
o 11111111 255

8

Adding Two Integers: Base 10
• From right to left, we add each pair of digits

• We write the sum, and add the carry to the next column

1 9 8

+ 2 6 4

Sum

Carry

0 1 1

+ 0 0 1

Sum

Carry
2

1

6

1

4

0

0

1

0

1

1

0

9

Binary Sums and Carries
a b Sum a b Carry
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

XOR AND

690100 0101
103+ 0110 0111

1721010 1100

10

Modulo Arithmetic
• Consider only numbers in a range

o E.g., five-digit car odometer: 0, 1, …, 99999
o E.g., eight-bit numbers 0, 1, …, 255

• Roll-over when you run out of space
o E.g., car odometer goes from 99999 to 0, 1, …
o E.g., eight-bit number goes from 255 to 0, 1, …

• Adding 2n doesn’t change the answer
o For eight-bit number, n=8 and 2n=256
o E.g., (37 + 256) mod 256 is simply 27

• This can help us do subtraction…
o Suppose you want to compute a – b
o Note that this equals a + (256 -1 - b) + 1

11

One’s and Two’s Complement
• One’s complement: flip every bit

o E.g., b is 01000101 (i.e., 69 in base 10)
o One’s complement is 10111010
o That’s simply 255-69

• Subtracting from 11111111 is easy (no carry needed!)

• Two’s complement
o Add 1 to the one’s complement
o E.g., (255 – 69) + 1 1011 1011

- 0100 0101
1111 1111

1011 1010

b
one’s complement

12

Putting it All Together
• Computing “a – b” for unsigned integers

o Same as “a + 256 – b”
o Same as “a + (255 – b) + 1”
o Same as “a + onecomplement(b) + 1”
o Same as “a + twocomplement(b)”

• Example: 172 – 69
o The original number 69: 0100 0101
o One’s complement of 69: 1011 1010
o Two’s complement of 69: 1011 1011
o Add to the number 172: 1010 1100
o The sum comes to: 0110 0111
o Equals: 103 in base 10

1010 1100

+ 1011 1011

1 0110 0111

13

Signed Integers
• Sign-magnitude representation

o Use one bit to store the sign
– Zero for positive number
– One for negative number

o Examples
– E.g., 0010 1100 44
– E.g., 1010 1100 -44

o Hard to do arithmetic this way, so it is rarely used

• Complement representation
o One’s complement

– Flip every bit
– E.g., 1101 0011 -44

o Two’s complement
– Flip every bit, then add 1
– E.g., 1101 0100 -44

14

Overflow: Running Out of Room
• Adding two large integers together

o Sum might be too large to store in the number of bits allowed
o What happens?

• Unsigned numbers
o All arithmetic is “modulo” arithmetic
o Sum would just wrap around

• Signed integers
o Can get nonsense values
o Example with 16-bit integers

– Sum: 10000+20000+30000
– Result: -5536

o In this case, fixable by using “long”…

15

Bitwise Operators: AND and OR
• Bitwise AND (&)

o Mod on the cheap!
– E.g., h = 53 & 15;

• Bitwise OR (|)

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 15

16

Bitwise Operators: Not and XOR
• One’s complement (~)
o Turns 0 to 1, and 1 to 0
o E.g., set last three bits to 0

– x = x & ~7;

• XOR (^)
o 0 if both bits are the same
o 1 if the two bits are different

^ 0 1
0 0 1

1 1 0

17

Bitwise Operators: Shift Left/Right
• Shift left (<<): Multiply by powers of 2

o Shift some # of bits to the left, filling the blanks with 0

• Shift right (>>): Divide by powers of 2
o Shift some # of bits to the right

– For unsigned integer, fill in blanks with 0
– What about signed integers? Varies across machines…

• Can vary from one machine to another!

53 0 0 1 1 0 1 0 0

53<<2 1 1 0 1 0 0 0 0

53 0 0 1 1 0 1 0 0

53>>2 0 0 0 0 1 1 0 1

18

Count Number of 1s in an Integer
• Function bitcount(unsigned x)

o Input: unsigned integer
o Output: number of bits set to 1 in the binary representation of x

• Main idea
o Isolate the last bit and see if it is equal to 1
o Shift to the right by one bit, and repeat
int bitcount(unsigned x) {

int b;

for (b=0; x!=0; x >>= 1)

if (x & 01)

b++;

return b;
}

19

XOR Encryption
• Program to encrypt text with a key

o Input: original text in stdin
o Output: encrypted text in stdout

• Use the same program to decrypt text with a key
o Input: encrypted text in stdin
o Output: original text in stdout

• Basic idea
o Start with a key, some 8-bit number (e.g., 0110 0111)
o Do an operation that can be inverted

– E.g., XOR each character with the 8-bit number

0100 0101

^ 0110 0111

0010 0010

0010 0010
^ 0110 0111

0100 0101

20

XOR Encryption, Continued
• But, we have a problem

o Some characters are control characters
o These characters don’t print

• So, let’s play it safe
o If the encrypted character would be a control character
o … just print the original, unencrypted character
o Note: the same thing will happen when decrypting, so we’re okay

• C function iscntrl()
o Returns true if the character is a control character

21

XOR Encryption, C Code
#define KEY ‘&’
int main() {

int orig_char, new_char;

while ((orig_char = getchar()) != EOF) {
new_char = orig_char ^ KEY;
if (iscntrl(new_char))

putchar(orig_char);
else

putchar(new_char);
}
return 0;

}

22

Conclusions
• Computer represents everything in binary

o Integers, floating-point numbers, characters, addresses, …
o Pixels, sounds, colors, etc.

• Binary arithmetic through logic operations
o Sum (XOR) and Carry (AND)
o Two’s complement for subtraction

• Binary operations in C
o AND, OR, NOT, and XOR
o Shift left and shift right
o Useful for efficient and concise code, though sometimes cryptic

23

Next Week
• Canceling second precept

o Monday/Tuesday precept as usual
o Canceling the Wednesday/Thursday precept due to midterms

• Thursday lecture time
o Midterm exam
o Open book and open notes
o Practice exams online

	Binary Numbers
	Goals of Today’s Lecture
	Why Bits (Binary Digits)?
	Base 10 and Base 2
	Writing Bits is Tedious for People
	Representing Colors: RGB
	Storing Integers on the Computer
	Adding Two Integers: Base 10
	Binary Sums and Carries
	Modulo Arithmetic
	One’s and Two’s Complement
	Putting it All Together
	Signed Integers
	Overflow: Running Out of Room
	Bitwise Operators: AND and OR
	Bitwise Operators: Not and XOR
	Bitwise Operators: Shift Left/Right
	Count Number of 1s in an Integer
	XOR Encryption
	XOR Encryption, Continued
	XOR Encryption, C Code
	Conclusions
	Next Week

