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Classical and quantum models of dynamically reversible computers are considered. Insta-
bilities in the evolution of the classical “‘billard ball computer” are analyzed and shown to
result in a one-bit increase of entropy per step of computation. ‘‘Quantum spin computers,”’
on the other hand, are not only microscopically, but also operationally reversible. Readoff of
the output of quantum computation is shown not to interfere with this reversibility. Dissipa-
tion, while avoidable in principle, can be used in practice along with redundancy to prevent

€ITors.

PACS numbers: 89.70.+c, 05.20.—y, 06.50.—x, 89.80.+h

Szilard! used the second law to establish that a bit
of information can be acquired at the price of no
less than a bit of entropy increase. Von Neumann?
and Brillouin® have extrapolated Szilard’s con-
clusion to conjecture that a similar price must be
paid for a single step of information processing.
Indeed, Landauer* has demonstrated that computer
programs which contain fundamentally, logically ir-
reversible steps lead unavoidably to dissipation of

AF~ kTIn2 (1)

of free energy per step of typical computation.® The
above estimate, while orders of magnitude below
the dissipation levels of present-day computers,
raises the following question: Is there a fundamen-
tal price which must be paid for processing of infor-
mation? Bennett®’ has been able to settle this is-
sue by devising models of physical systems which
compute, and yet dissipate arbitrarily small amounts
of free energy. Programs for such computers avoid
dangers of logical irreversibility by recording all the
steps taken along the path of the computation.
Indeed, every program can be recast in such a logi-
cally reversible manner.® However, Bennett’s
models are thermodynamic in nature; random
Brownian motion pushes the computation forward,
and reversibility is achieved only in the limit of in-
finitesimally slow computation. One is then led to
inquire: Is it possible to compute arbitrarily fast
with arbitrarily small dissipation? Below we shall
analyze classical and quantum dynamically reversi-
ble computer models, which are needed to answer
this question.

Fredkin and Toffoli®® proposed the billiard ball
computer (bbc). It uses elastic collisions between
hard-core disklike particles, ‘‘billiards,”” moving on
a two-dimensional ‘‘table’’ to perform a computa-
tion. The dynamics of the bbc is no doubt, micro-

scopically reversible. So is, however, dynamics of
the Boltzmann gas. Is it possible that the computa-
tion of the bbc is also effectively irreversible?

Trajectories of the individual particles in a run of
a bbc must follow the ‘‘grid”’ of the cubic lattice.
This ideal case could be achieved only at the ex-
pense of an infinite initial free energy, as the initial
conditions for each billiard would have to be set
with infinite precision.!® Let us therefore suppose
that initial momenta and positions are set with arbi-
trarily small errors Ap,=Ap,=Ap and Ax=Ay
=Agq, which, for simplicity, are assumed to be
identical for all particles. For a bbc with N particles
in two dimensions the entropy of this initial config-
uration is given by the logarithm of the volume
subtended by the 4 N-dimensional error box in the
phase space:

N
VO =TIap?Aq?=(ApAg)?, )
Jj=1

S=kiln(VO/p2¥) =2NkIn(Aq Ap/h).  (3)

Error boxes of individual particles evolve as a
consequence of collisions: A small error in angle
increases with each particle-particle collision as

Ap'=A¢p(1+1/r), (4)

where [ is the free path and r is the hard-core ra-
dius.* The uncertainty of the momenta of the bil-
liards grows by the same factor. The volume of the
phase space subtended by individual error boxes
after n collisions will then be given by

v — yO TT(1+ i/r). (5)

j==1]

The above estimate deliberately neglects correlations
between billiards which are introduced in the course
of the collisions.!! In a typical bbc /is at least of the
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order of r. The increase of entropy in a single col-
lision, which can be regarded as a ‘‘single step of
computation,’’ is then

AS=kIn(1+//r)=kIn2. (6)

This limit is equivalent to Eq. (1) for 7=0.12 It is
worth stressing that above it was arrived at through
reasoning very different from that of Szilard.

Errors introduced by the coupling to additional
degrees of freedom or by an imperfect realization of
interactions have been disregarded so far. We were
solely concerned with ‘‘software errors’’ in prepara-
tion of the initial state—the ‘‘program’’ for the bbc.
There appears to be, however, no reason why, at
least within the context of classical mechanics, such
“hardware errors’’ cannot be made arbitrarily small.
Moreover, as long as they are small, they enter only
as an additional source of the already discussed
software errors.

The origin of the increase of entropy in the
dynamically reversible bbc is the same as in the
Boltzmann gas. Thus, even though the volume of
the system in the phase space is constant, in accord
with Liouville’s theorem, the volume traced out by
the error boxes of individual particles increases ex-
ponentially. It is important to stress that the esti-
mate for the entropy produced per collision, Eq.
(6), is derived in the limit of a small initial error.
Therefore, the dissipation rate of approximately one
bit per step of computation cannot be made smaller
even for an infinitesimally small initial error. Insta-
bility of the trajectory poses a very serious threat to
the operational reversibility of the bbc. It seems
unlikely that it could be eliminated by natural modi-
fications of its design.!3

One may object to these conclusions by noting
that the simultaneous reversal of all the velocities
would force the bbc to return from the large effec-
tive volume V(" into a much smaller, initial ¥{®.
The problem with this objection is of the operation-
al nature: It cannot be implemented without the
additional increase of entropy. To see this, consider
a reversal which is to be accomplished by means of
flat ““mirrors,” positioned with the accuracy Ax;®)
and aimed perpendicular to the actual velocities of
the particles with the accuracy A¢ [®). The accuracy
of the reversal can then be characterized by the
volume of the error box,

N

VR = H(APJ(R) qu(R))Z,
J=1

where Ap,(R)=p A¢ (B If the system is to return
into the volume V© after n “‘reverse” collisions,
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one must at least require that
Ve < VOO pim)y, @)

However, after n collisions positions and velocities
of the individual particles in the system are known
only with the accuracy characterized by V.
Therefore, in order to position mirrors with an ac-
curacy called for by the restrictions on Vg, one
must measure momenta and positions of particles.
Such measurement, by Szilard’s argument, requires
an expenditure of entropy of no less than

AS=kIn(VP/Vg)=2kIn(V®/y©®)  (8)

Thus, even though the system can be forced to re-
turn into the initial error box, the reversal can be
accomplished only at the expense of entropy pro-
duction which is precisely such as to make dissipa-
tion of less than a bit per collision, Eq. (6), out of
the question. It is perhaps interesting to note that a
similar argument could have been used by
Boltzmann in his famous defense of the H theorem
against some of the time-reversal arguments of
Loschmidt.

Quantum computers were suggested and analyzed
by Benioff'# and Feynman."> Typically, they consist
of N interacting two-state (spin--like) systems.
We shall call them quantum spin computers (qsc’s).
The initial ‘“‘input’’ state of a gsc is a quantum
binary string, e.g.,

D) =10)1]1)5 - - - [0) y.

States |0) and |1) span Hilbert spaces of individual
binary elements. Computation is accomplished
through the unitary evolution:

|® ) =exp(— iJ;)TH dt)|®;,)

= 0(T)|(Din>'

Above we have set 7 =1. The ‘‘output’ state of a
gsc also has a binary string structure.’® In the
course of the computation, intermediate states are,
in general, superpositions of binary strings. In most
of the designs they recover the product structure in
the {|0), 1)} basis with a certain periodicity .

As in the case of a bbc, one can inquire about the
effect of small software errors in |®,,), as well as
about the role of hardware errors in the Hamiltoni-
an. An additional question, which does not arise
for classical computers, concerns the readoff of
|®yy). Will the measurement of the state of the
quantum computer lead to obstacles in making
computation reversible? Fortunately, the answer to
this question is straightforward. Both |®;,) and
|d)ou,) have simple product structures in a properly
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designed gsc.!” Therefore, the measurement of the
string of |0)’s and |1)’s will not result in the
“reduction of the wave packet.”’'® Consequently,
readoff does not interfere with the reversal.

Both preparation of |®;,) and readoff of |®,,)
may introduce ‘‘software errors.”” Consider, for ex-
ample,

|‘Din> = |0>1|1>2 T
X [(l— |a|2)1/2|1)k+al0)k] . |0>N
9)
A small software error (~«) in the encoding of
the kth bit of the program causes only an equally
small error in the output:

|D0y) = (1= |a|)V2]dg,) +alW), (10)

where |¥) is an output of the computation which
starts with the state differing from |®;,) in the kth
bit. This follows from the linearity of U(7) and
can be generalized to the case when there are errors
in more than one bit:

N 1/2
= 1_ 2'&1'2

i=1

|<I)in> + gai‘q’i)- (11)
i=1

Above, |®,) spans the Hilbert space of all possible
states. Again, by linearity,

N
|Pour) = (1= 3 la; )12 dg,,,)

j=1

N, N

-
Software errors are conserved in a qsc. Therefore,
quantum computers appear to be reversible in a
more fundamental sense than the classical bbc.

Let us now consider hardware errors of a gsc.

Suppose that the actual Hamiltonian H' differs
from the ideal H by a (small) error A:

H=H+h (13)

We can estimate the influence of the hardware er-
ror h by calculating

(Dot i) 2= | (Dy | eFte = iCH+ V1|, 1y |2

=1—-A\22+..., (14)
where

A= <q)in|;72|q)in> - |<q)in'illq)in> l2'

Above, we have assumed that A¢ << 1 and that
higher-order terms with powers of [(®y]
x [H,h]|®;,) | are still smaller. (Indeed, this is the
sense in which 4 ought to be small.)

My calculation demonstrates that, as in the

“watchdog effect,””!? the probability of the compu-
tational error induced by a small hardware error A
increases only quadratically with time. This sug-
gests a way to stabilize quantum computation with
measurements of the intermediate states of the
quantum computer at these instants when its state
has a product structure. For, the probability to find
the state perturbed from what it ought to be is di-
minished by » measurements as [1—(A#/n)2]"
>1—(\t)?aslongasat < 1.2

The computation of a gsc is stable and does not
increase entropy in a manner which appears so
inevitable in classical many-body systems. This
qualitative distinction between a bbc and a gsc can
be traced back to the structure of their respective
phase spaces. The Hilbert space of a gsc is discrete.
Each orthogonal state corresponds to a distinct pos-
sible input. There is literally no room for the er-
rors. This rules out instabilities encountered in a
classical bbc, where the ideal input states are only a
subset (of measure zero for # — 0) of all the possi-
ble states. One can, of course, design a quantum
computer which in the classical limit would ‘‘recov-
er’ all the instabilities of a bbc. Needless to say,
this would not be an optimal design of a reversible
quantum computer.

However, there is a useful way to employ addi-
tional room in the phase space in both quantum and
classical computers. Consider an ensemble of N
identical gsc’s which perform the same computa-
tion. The redundancy of such an ensemble can be
used to reset states of each gsc to the ‘‘average’
state every few steps of computation. This will
reduce the random errors by NY2. An equivalent
strategy can be also employed in the bbc. There,
the state can be periodically measured to verify how
far it has strayed from the ideal trajectory. This is
possible because of the redundancy: Trajectories
which correspond to different ‘‘programs’’ are far
apart in the phase space and can be distinguished.
Errors can be reduced by restarting the computer
on the appropriate trajectory. However, measure-
ments and resetting require dissipation. The
minimal cost of such an operation is expected to
follow from Eq. (6). While this strategy does not
accomplish reversibility, the way in which it com-
bines redundancy with dissipation is reminiscent of
the strategies employed in the ‘‘real world”’ com-
puters.

The present considerations support the con-
clusions of Bennett®’ and Landauer?!: Reversible
computation is compatible with the laws of physics.
The quantum spin computers of Benioff and Feyn-
man prove that it can be arbitrarily fast and dissipa-
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tionless, even though practical realizations of gsc’s
are likely to be forbiddingly difficult. The billiard
ball computer of Fredkin and Toffoli—although
plagued by instabilities—provides additional argu-
ment in favor of the fundamentally reversible na-
ture of the computation. For, if the computation
were, for some reason, fundamentally irreversible,
it should be impossible to map it onto a system with
microscopically reversible dynamics.* Ultimately,
Szilard’s limit, Eq. (1), does not apply because, in
contrast to a measuring apparatus, the computer can-
not be used to gain new information. However, dissi-
pation can be used to correct errors in a strategy which
also involves redundancy. In this practical context
the analogy with the noisy channel, and, therefore,
the limit set by Egs. (1) and (6), can be meaning-
ful.
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