SOLITON COMPUTATION

Ken Steiglitz Dept. of Computer Science Princeton University

Collaborators:

- M. H. Jakubowski (Microsoft)
- R. K. Squier (Georgetown)
- M. Segev (Technion and Princeton)
- C. Anastassiou (Princeton)
- D. Lewis (Columbia)
- J. Fleisher (Technion)

A little history

- . 1985: solitons in cellular automata
- . 1988: embedded addition in 1-d CA
- . 1994: particle machines, linear-time arithmetic
- . 1996: information transfer in nonintegrable solitons
- . 1997: integrable Manakov (vector) solitons
- . 1998: state characterization of Manakov solitons
- . 2001: universality of gated Manakov solitons
- . 2001: experimental information transfer
- . 2001: multistable cycles

Parity Rule Filter Automata (PRFA):

Starting from a random configuration

Solitonic collisions

Solitonic collisions, between particles in the parity rule filter automaton

Solitonic collisions

In the parity rule filter automaton

In the nonlinear Schroedinger equation
(Image by Paul Lundquist)

A ripple-carry adder

Scheme of a ripple-carry adder embedded in a PRFA

Detail of a typical addition (wrapped)

Particle machines

The general picture in one-dimension

Example of addition

John Scott Russell

- "I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped not so the mass of water in the channel which it had put in motion...
- I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour... Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation". John Scott Russell, Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII.

Multiplication on a particle machine

The "soft" systolic array

Division (reciprocal)

- . Uses Newton iteration a la Leighton; Can do lineartime, arbitrary-precision arithmetic
- . Particle machine with 38 types of particles and 79 rules
- . A linear, homogeneous, DSP machine

Division in a particle machine

Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995 (Photo from Dugald Duncan, Heriot-Watt University, Edinburgh).

Information transfer in collisions

Collision in the (integrable) nonlinear Schroedinger equation; no information is transfered. Relative phases at left and right differ.

Collision in the saturable (nonintegrable) Schroedinger equation; information is transfered, but at the expense of radiation. Relative phases at left and right differ.

A surprise

PHYSICAL REVIEW E

Inelastic collision and switching of coupled bright solitons in optical fibers

R. Radhakrishnan, ¹ M. Lakshmanan, ¹ and J. Hietarinta^{2, ®} ar Dynamics, Department of Physics, Bharathidasan University, Tiruchir ²Department of Physics, University of Turku, FIN-20014, Turku, Finland

$$iq_{1x}+q_{1tt}+2\mu(|q_1|^2+|q_2|^2)q_1=0,$$

$$iq_{2x}+q_{2tt}+2\mu(|q_1|^2+|q_2|^2)q_2=0,$$

 $\alpha_1 e^{\eta_1} + \alpha_2 e^{\eta_2} + e^{\eta_1 + \eta_1^* + \eta_2 + \delta_1} + e^{\eta_1 + \eta_2 + \eta_2^* + \delta_2}$ $=\frac{1}{1+e^{\eta_1+\eta_1^*+R_1}+e^{\eta_1+\eta_2^*+\delta_0}+e^{\eta_1^*+\eta_2+\delta_0^*}+e^{\eta_2+\eta_2^*+R_2}+e^{\eta_1+\eta_1^*+\eta_2+\eta_2^*+R_3}},$

$$\beta_1 e^{\eta_1} + \beta_2 e^{\eta_2} + e^{\eta_1 + \eta_1^* + \eta_2 + \delta_1'} + e^{\eta_1 + \eta_2 + \eta_2^* + \delta_2'}$$

 $q_2 \! = \! \frac{\beta_1 e^{\eta_1} \! + \! \beta_2 e^{\eta_2} \! + \! e^{\eta_1 \! + \! \eta_1^* \! + \! \eta_2 \! + \! \delta_1'} \! + \! e^{\eta_1 \! + \! \eta_2 \! + \! \delta_2'}}{1 \! + \! e^{\eta_1 \! + \! \eta_1^* \! + \! \delta_1} \! + \! e^{\eta_1 \! + \! \eta_2^* \! + \! \delta_0} \! + \! e^{\eta_1^* \! + \! \eta_2 \! + \! \delta_0'} \! + \! e^{\eta_2 \! + \! \eta_2^* \! + \! \delta_2}}$

State transformations

 $\rho = q_1(x,t)/q_2(x,t)$

$$\rho_2 = \frac{[(1-g)/\rho_1^* + \rho_1]\rho_L + g\rho_1/\rho_1^*}{g\rho_L + (1-g)\rho_1 + 1/\rho_1^*},$$

$$g(k_1,k_2) = \frac{k_1 + k_1^*}{k_2 + k_1^*}.$$

Phase switching gate

Phase-switching NOT gate

Energy switching gate, a kind of dual

Energy-switching NOT gate

Building a computer

NAND

z converter: 0/1 yields z's for a ONE/NOT gate

y converter: 0/1 yields y's for a ONE/NOT gate

General logic

The big picture: spatial solitons in a photorefractive crystal

Experimental results

Anastassiou, Fleischer, Carmon, Segev, Steiglitz, submitted to Optics Letters

Multistability: all-optical set-reset flipflops

Basins of attraction

Basins of attraction, another example

Basins of attraction, four beams

