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A little history

. 1985: solitons in cellular automata

.1988: embedded addition in 1-d CA

.1994: particle machines, linear-time arithmetic
.1996: information transfer in nonintegrable solitons
.1997: integrable Manakov (vector) solitons
.1998: state characterization of Manakov solitons
.2001: universality of gated Manakov solitons
.2001: experimental information transfer

.2001: multistable cycles

Parity Rule Filter Automata (PRFA):

Starting from a random configuration

Solitonic collisions

Solitonic collisions, between particles in the
parity rule filter automaton

Solitonic collisions

In the parity rule filter automaton

In the nonlinear Schroedinger equation

(Image by Paul Lundquist)

A ripple-carry adder
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Scheme of a ripple-carry adder embedded in a PRFA

Detail of a typical addition (wrapped)




Particle machines
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The general picture in one-dimension

Multiplication on a particle machine
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The “soft” systolic array

[Sad (O @ 0 @

O [Oad @[] <@ <©

@
e @ g <0

o e

[Ond
(S3d @

&M o [Oad

[Sad
[Oad @

F & o o

Example of addition

Division (reciprocal)
. Uses Newton iteration a la Leighton; Can do linear-
time, arbitrary-precision arithmetic

. Particle machine with 38 types of particles and 79
rules

. A linear, homogeneous, DSP machine
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Division in a particle machine

John Scott Russell

“l was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped - not so the
mass of water in the channel which it had put in mo-
tion...

| followed it on horseback, and overtook it still rolling
on at a rate of some eight or nine miles an hour...
Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phe-
nomenon which | have called the Wave of Transla-
tion”. — John Scott Russell, Report of the four-
teenth meeting of the British Association for the Ad-
vancement of Science, York, September 1844 (London
1845), pp 311-390, Plates XLVII-LVII.

Soliton on the Scott Russell Aqueduct on the Union
Canal near Heriot-Watt University, 12 July 1995 (Photo
from Dugald Duncan, Heriot-Watt University, Edin-
burgh).




Information transfer in collisions A surprise
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Inelastic collision and switching of coupled bright solitons in optical fibers
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Collision in the (integrable) nonlinear Schroedinger ig2:+ qant20(lq1 > +19217)42=0,

equation; no information is transfered. Relative phases
at left and right differ.
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Collision in the saturable (nonintegrable) Schroedinger
equation; information is transfered, but at the expense
of radiation. Relative phases at left and right differ.
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Energy switching gate, a kind of dual Building a computer
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COPY and FANOUT
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wire crossings later!

... plus NOT, ONE gates in a similar fashion
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z converter: 0/1 yields z's for a ONE/NOT gate

y converter: 0/1 yields y's for a ONE/NOT gate
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Need for two speeds
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Complete NAND

A second speed is needed to use the output
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Implementing an XOR with NANDs




The big picture: spatial solitons in a
photorefractive crystal

time-gated beams
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Experimental results

Anastassiou, Fleischer, Carmon, Segev, Steiglitz,
submitted to Optics Letters
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Multistability: all-optical set-reset flipflops
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Basins of attraction
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Basins of attraction, another example
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Basins of attraction, four beams
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