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Abstract. Group-valued cellular automata with soliton behavior are considered and a Fast Rule
theorem is proved. This new class of automata generalizes those recently introduced by Fokas,
Papadopoulou and Saridakis [1).

INTRODUCTION

One-dimensional cellular automata with solition behavior were introduced by Park, Stei-
glitz and Thurston [2]. As dynamical systems these automata are, in principle, systems of
infinite range, therefore it was a great step forward when the analysis of these so called
Filter Automata was considerably simplified by discovery of the fast rule theorem (FRT) by
Papatheodorou, Ablowitz and Saridakis [3]. The FRT not only simplifies the determination
of the dynamics, but also presents the mathematical structure which is responsible for the
soliton behavior of these systems.

Later these automata were intensively investigated [4,5] and the soliton structure of these
systems was based on a firm theoretical foundation. In a recent paper [1], it was shown that
even a generalization to states taking values in finite groups is possible. This is important
insofar as it allows the extension to multidimensional systems (of finite width, however).

In this paper we push the applicability of the important fast rule theorem even further. Not
only that group-valued states are admitted, but also the carrier wave, that is the underlying
evolution of non-boxed states, is now allowed to be of a more complex nature. Furthermore,
a wider variety of changes for the so-called boxed states is possible.

The consequences of this extension for the solion behavior are considerable. Not only
that more internal degrees of freedom are possible, an effect which will be important for
applications, but also the behavior of trivial basic strings (i.e., strings with length 1) is
changed drastically. Now, we can have nontrivial basic string which are annihilated, and
trivial basic strings may have an oscillatory behavior.

THE LAw oF EVOLUTION
We consider a group G (not necessary abelian). The law of composition in G is denoted
by g ® h, the unit element is e and g is the inverse of g. The abbreviation ®2, g; stands for
InOIht+1® - gm.
We consider one-dimensional lattice vectors @ : Z — G and write these as @ = (..., a_n,

Q_p41,---,80,---, Gn, ...). The manifold under consideration is the set of those lattice
vectors being e identically on the left end, i.e., for each such element @ there is some m € Z
such that a; = e for all ¥ < m. We are interested in discrete dynamical laws for time

dependent lattice vectors d@(t), where the time ¢t is assumed to run through Z.

We fix some integer » > 0, furthermore, group homomorphisms R, p and 7 : G — G and
some map J : G — G. The map J cannot be a homomorphism, since we assume J(e) # e.
The maps under consideration are required to fulfill the following compatibility conditions:

Rr = p, (1)
JRJ(e) = e, (2)
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where 5 and R are the maps ¢ — p(g) and g — R(g). The state a;(t+1) is called ezceptional
if the following conditions are fulfilled:

7(ai(t)) = T(ai41(t)) = - - = T(airr(t)) = ¢, (3)
ai—r(t + 1) = (1,'_,-+1(t + 1) =...= a,-._l(t + 1) = e. (4)
Observe that, by use of (1), (3) implies that p(a;(t)) = - - - = p(ai4+r(t)) = e. On the manifold
we consider the discrete flow
) _ if a;(t + 1) is exceptional
a(t+1)= { J(5:(%)) ® T(a;4+-(t)) otherwise } ’ (5)

where

5i(t) = @z, {P(ai+j+r(t)) ® R(aiy;(t +1))} . (6)
Observe that s;(t) = e if a;(t + 1) is exceptional. We split this flow up into its leading term
and then into a linear and a nonlinear contribution. The leading term is the one in (5) being
farthest to the right side. By this we obtain a separation of influence. This leads to the
introduction of the following quantities v (change-function) and N (nonlinearity)

ai(t+ 1) = Yigr(t) ® 7(aiyr (2)), (7
ai(t+1) = Niyr (1) ® J(si(t)) ® 7(ais+(1))- (8)

Comparing these two equations we obtain
Yir(t) = Nigr(t) @ J(5:(2)). (9

We say that the state ai(t) changes by ¥;(¢). The quantity A := J(e) is said to be the
standard change. Later on, we will show that the only values v attains are e and A. The
unchanging dynamics given by a;(t + 1) = 7(ai+r(¢)) we call the carrier wave of the sys-
tem (5). For the analysis of the dynamics we adapt the following notions:
The state a;(t)—at time t—is said to be

(i) a unit state if 7(a;(2)) = e

(ii) a linear state if Ng(t) =€

(iii) a non-changing state if y;(t) = ¢

ANALYSIS OF STATES
Inserting (7) into (6) we obtain the identity

5i(t) = @72, {p(ai4j+r(t)) ® R(T(Gitj4r(1))) ® R(¥ier+i())} - (10)
Using (1) this simplifies considerably
si(t) = J——r {R(7t+r+1 (t))} (11)
Observation.

(1) If a;(t + 1) is exceptional then, by the evolution law, we have g;(t + 1) = e and, by
definition, 7(a;4,(t)) = e. As consequence of (7), a;4.,(1) is non-changing. And, using
(9) together with s,(t) = e, we find that Ny,,(t) = J(e) = A. Hence, N only attains
the values e and A.

(ii) If ag_-(t + 1) is not exceptional, then by the evolution law (5), we have N(t) = e.
Hence a.(t) must be linear. Conversely, if a;(t) is linear, then Ni(t) # A, and, by the
above, a;_,(t + 1) cannot be exceptional. So exceptional states correspond uniquely
to nonlinear states.

(iii) Let ax(t) be nonlinear. Since ax_.(t+ 1) is then exceptional, we obtain from (3) and
(4) that

T(ak(t)) = e and 7(ar_r(1)) = T(ak—r41(t)) = -~ = T(ar-1(2)) = ¢, (12)

Ye—r(t) = Veers1() = - = a(t) = e, (13)
where the last identities were obtained by inserting (7) and (12) into (4).
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We obtain from these observations the following rules:

RULE 1: A state is nonlinear if and only if it is a unit state and is preceded by r non-changing
unit states.

RULE 2: If ax(t) is preceded by r non-changing states, then ai(t) is changing if and only if
it is a linear state. In that case it changes by the standard change A.

RULE 3: If for ax(t) there is among the preceding r states exactly one changing state and
if that changes by the standard change, then a;(t) is non-changing.

ProoF:

1: Assume that ax(?) is nonlinear, then the implication follows directly from (12) and (13).
The converse follows from the fact that if the unit state a(t) is preceded by r non-changing
unit states then (12) and (13) follow. So, from (3) and (4) we see that ap_.(t + 1) is
exceptional which is, by (ii), equivalent to ax(t) being nonlinear.

2: From (11) follows sx_,(t) = e, and by (9), Ni(t) = 7:(t) ® A. By (i) and (ii) nonlinear
states are non-changing. So, ax(t) is changing if and only if it is linear, and from Ni(t) = e
it follows e = 4, (t) ® A. This implies that it changes by the standard change.

3: If ax(?) is not linear then by (i) and (ii) it is not changing anyway. So, we assume that
ax(t) is linear. Let ax_,(t) the one changing among the r preceding states, then by (11),
sk-r(t) = R(ni-n(t)) = R(A) = R(J(e)). With (9) this gives 7:(t) = J(R(J(e))). By
assumption (2) this is equal to e and ax(t) is proved to be non-changing. [ |

These rules imply the following generalization of the Fast Rule Theorem [3] for obtaining
from the configuration d@(t) the states at time (¢ + 1):

(o) From non-changing states ax(t) we obtain the ax_,(t+ 1) = 7(ar(t)) from the carrier
wave. '
(8) The connected sequence of unit states to the left end of d(t) consists of non-changing
states, and the first non-unit state from the left is the first changing state.
(v) All changing states are changing by the standard change A. From one changing state,
the next changing state, if there is any, is found by the following:
e Go (r + 1) states to the right. If either this state or at least one among the last
r states is a non-unit state, then this state is the next changing state. Otherwise
the first non-unit state to the right is the next changing state.

PROOF: By definition the unit states to the left are nonlinear, hence non-changing. The
first non-unit state to the left must be linear, since nonlinear states are unit states. So,
Rule 2 gives that this state changes by the standard change.

Now, by iterating Rule 3 we find that the next r states do not change. Hence, the next
candidate for a changing state is the one (r + 1) places to the right. This state, by Rule 2,
either is changing by A and linear or it is nonlinear. If it is nonlinear then by Rule 1 it
must be a unit state, and the states in between must be unit states as well. Since nonlinear
states are not changing, Rule 2 must in that case provide the next linear state as changing
state (which then is changing by A). By Rule 1 this state must be the first non-unit state.
Repeating the last sequence of arguments we find that the Fast Rule Theorem is proved. §

Example 1. Fix some non-unit element c in G, define J(g) := g®c, put themaps R=7=p
equal to the identity map. Then the compatibility conditions are fulfilled and the situation
of [1] is recovered.

Example 2. Consider G = Z, = Z/¢Z the congruence classes modulo q. Let ¢ # 0 and R, p
be elements of Z, such that (R+1)c = (R+1)p = 0. Define J(z) := z+c, R(z) := —Rz and
7(z) = p(z) := pz then again the compatibility conditions are fulfilled. Automata of this type
indeed admit a new soliton behavior. For example: Take r =2, ¢g=4, R=1, p = 2, and
¢ = 2, then one easily sees that the trivial basic string 0, ---,0,2,0,2,0, ---, 0 is an-
nihilated after two time-steps, whereas the 1 in 0, ---,0,1,0, ---, 0 oscillates between
1 and 3. A complete description of solitons will be given in a forthcoming paper.
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