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time in the quantum case. That is because for any given N this condition doss not, deterministic computation,
from the solver's point of view, exclude any function J: Z,, —~ Z,. 80 by the sme
mrgument that we used for the general problem, there canmot be & less-than-
exponential clasical solution even for the restricted problem. The operstion of any computing machine is necessarily s physical process.
%evertheless, the standard mathematical theory which is used to study the
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walues < but it is & good deseription in many realistic situations.
It in usefal to classify computational tasks into evalustions of fumchions and
solutions of problems. In the case of functions, the task is to obtain the unique output
that is the specified ?ﬂi?ﬂn—.ﬂﬂginﬂ.:ig.ﬂl&iﬁf

is fun
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output that has & specified property. For example, to find & factor of & given
Hvﬂinﬁ:ﬂtn?ﬂ:ﬂn_ Finding the least prime factor I8 & fonction
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ndditional constraint, narrowing the task to s function evalustion. Therefors when

solving problems s clamical computer cannot belp performing & harder .
putational task than the one it was set. B o
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need not always evaluate functions because the course of ita computation, and .

therefore ita cutput, need not be uniquely determined by the input. However, this
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nﬂﬁi?in&l%. computation has the specified property

that sclves problem. what is the purpose of choosing numbers randomly in the i

course of the computation! One reason might be that there is & deterministic
E-E-ﬂlnﬁﬁ..ﬂa&rl_ which takes & parameter, and the ranning time
on [

& quantum computer.
Lat o, be & Hilbert space of dimension mn and let
ez, jaZ,) (1
be u fixed orthonormal basis in 2. Suppose that operates by sceapting inpa

in any state [k, 0} of the basis, repressnting the value k, and converting it to sutput
in the state & fik)}, from which the value f{E) can be resd off with probability 1.
More generally, we may supposs that ....__..-..E-_-.l the unitary evolotion )

L
K33 = H.3+ 003, i)

where the addition in the expression j+ fif) s performed modulo n. Then, by the
linearity of quantum svolution, U, will evolve the input state

W0, 0% 4 ..+ m—1,00%) (k1]

to Lhe output state
w0000 + ... 4 =1, flm— 1)) ()

Thus, by ranning ' only once, we have in some sense computed all m values of f, in
superposition. Elementary quantum messurement theory shows that no quantom
mieasurement applisd to the systam in the stabs (4) can be ussd to oblain mors than
one of the m values f10), ..., fim—1). However, it is possible to extract some joint
propertieas GLAD), ... fim=1)] of the m valoes, by messaring certain obssrvables
which are not diagonal in the basis [1). This is called the method of compuiation by
queanium parallelism and is possible only with computers whose computations are
eoherent quantum processes. For examples see Deutsch (1985) and Jozss (1991},
To date, all known computational tasks which can be performed more efficiently
by gquantum parsllelism than by any classical method have the following two
properties. Firstly, the answer in not obtained with certainty in & given time; that
is, there is & cortain probability that the program will report that it hes failed,
Eﬂ?ﬁf?ihlffl_nr‘fii
E

before the answer s obtained Becondly, although on some oooasions it runs
than any classical algorithm, the quantum algorithm is on aversge no more sfficient
than & classical one. [t can be shown [Deutach 1985) that the second property mast

hold for at least one choioe of input in the quantum computation of any function.

It is the purposs of this communication to describe & problem for which quantum
parallelism gives & solution with certainty in & given time, and is absolutely mors
efficient than any classical or stochastic method.

The problem is as follows: Given & natursl number N and an oracle U, for &
function [ Z,p -+ X, find & tros statement in the list:

{A] f & not & constant fanction (st 0 or 1);

(B) the sequencs 0], ... 2N = 1) of values of Jf doss not contain exsctly N sercs,

Note that for any f. st least one of (A) or (B) is slways true. It may be that both
are true, in which oase either (A) or (B) s an scoeptable solution. That s why the
solution of this problem is not necessarily tantamount to the computation of &
function. A stochastic or quantum algorithm for solving it may have the property
that when (A) and (B) are both true, it returns sither answer, randomly. Bot when
only one of them is true, the algorithm must return that one with certainty.

Consider firat the classical solution. We repeatedly ron [, to ealoulate values of f
in some order, say ST, AUT(L)), AUNZY, ..., where [T is & permutation on Zy,. We
continue until we have enough information to prove that (A} or [B) is troe. This is
always achieved in at most N+ 1 invoeations of U, though many functions f will
require fewer invooations, if-g.ﬁfqﬂfn!%ﬁhﬁg_:;
[{IT{ZN = 1)} of zeros and oves, we have the results of table 1. i
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Hence, given a large number of random fu, the average number of invocations of U,
required to salve the problem for esch [ is

Nt * i
m:.llp._.-m-.-ﬁ—- Hlmnﬂ_ (1]

Le. approximately three invocations for large N. [ we are exceptionally unlucky, or
if the fs are not presented randomly, but perversely by someone who knows what
algorithm we are going to use, we shall require N4 1 invocations, With & classical
stochastic computer we can choose the permutation /T randomly, s procesa which
iﬂﬁlﬁ?&!:lﬂl!-ﬂl‘-_iggnnisiiﬁqrrﬂ!
spproximately thres invocations. though again In unlucky cases this may rise to
N+i invocations, plus an overhesd of ({NIn{N')) staps.

HNow we present & method of solution using quantum parallelism. Let 5 be the
unitary operation defined by

h__.-.._.q.v - - -".__._.m.,.._..v- (6

This operation can be performed by & quantum computer (of. Deutsch 1885) i
fixed number of wteps, independent of N and f. The stats ooy

-
tvl..__ﬁzvm.?uu_ m
can be propared, starting with the 'blank’ input 10,0, in O(n(N)) steps,
independently of f. For example, if 2N is & power of two, this could be done
%Eigi? o .
)+ Ald +(— 11 =2)) (zeZ,) i8)
suocessively to each of the log,(2V) bits that hobd the value i in (7).

Given & quantam oracls [f apply the three operations [T, 8, U7, suceensively to the
E%iﬁfiﬁiv.ﬂrﬂmﬁl.:. .E_E._:.__._rr:._..n___s._.__...n
I
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The magnitude of the inner product

Kp1¥= g5 E (—1| (10)
is zero when statement (B) is false, and unity when statement (A) is false. Therefore
if, after performing the operations in (9), we mesasure the projection cheervable
#2 (. and the outcome is 0, we can be sure that ) was not parallel to |¢), and

hence that (A) is true. And if the outcome is |, we can be sure that |j) was not
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orthogonal to @3, and henoe that (B) is true. The cutcome must be either 0 or 1,
becanse thoss are the only sigenvalues of any projection obssrvable. Therefors the
procedure cannot fsil to establish the truth of sither (A) or (B).

The measurement af [#3 £ can bs performed in Ofln N} stepa, by first performing
the inverse of the transformation which prepared |¢) from & blank input 0,0, and
then measuring the obeervable |0,0) (0,01, which is simply & matter of measuring
each bit independently. The oracle [, is invoked exactly twice in (), and no other
invocationa are required. This is & clear improvement over the average of 3174+
invocations required by the best classical or stochestic method, and & vast
improvement over the worse case (¥+ 1 invoostiona) for sither of those methods.
Note that the problem is solved on each oocasion with certainty.

It ia intersating to compare the computational complexity of this problem relative
with classicsl and quantum computers. In the classical case, polynomial squivalenos
class complexity theory (Garey & Johnson 19789) is based on deterministic (oTa) and
non-deterministic (woru) Turing machine models. We first note the result (referred
to as (*)) that for any classicsl solution of our problem, using & DT, thers sxists &

by e Iiﬂﬁ_._l!#wu._n.ﬂ__,
this, supposs that & pre can solve the problem for every
invooations. Let f, be & constant function so that statement (A) is false and the

&
at all i choices, and has axactly N zero valuss. Sines, by ssumption, the M valuss
constitute the only information that the pra has about the function, it cannot
distinguish U, from U,, ie. it ennnot conclude that statement (B) is true. The same
argument applies to ¥BTus, showing that the decision problem of whether B is true
of not, is not in the class NP (though the corresponding problem for A is in NP but
not in F).

To asaeas the complexity of the problem consider first an ideaticed situation in
which the oracle is deemed to deliver its result in one computational step, snd not
to contribate to the sie of the problem’s input data. Then the problem is specified
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