VOLUME 48, NUMBER 4

PHYSICAL REVIEW LETTERS

25 JANUARY 1982

Is There a Fundamental Bound on the Rate at Which Information Can Be Processed?

David Deutsch
Astrophysics Depavtment, Oxford University, Oxford OX1 3RQ, England, and Center for Theovetical Physics,
University of Texas at Austin, Austin, Texas 78712
(Received 29 September 1981)

It is shown that the laws of physics impose no fundamental bound on the rate at which
information can be processed. Recent claims that quantum effects impose such bounds

are discussed and shown to_be erroneous.

PACS numbers: 89.70.+e, 03:65.Bz, 05.90.+m

The speed of electronic information-processing
devices being manufactured and designed is con-
tinually increasing. It is of interest to inquire
whether the rate at which information can be pro-
cessed is in principle limited only by our ingenu-
ity and by the availability of resources, or wheth-
er there exists any fundamental bound imposed by
the laws of physics. My purpose here is to ex-
plain why there can be no such fundamental bound,
and to demonstrate that recent claims to have dis-
covered such bounds are erroneous.

The essential feature of an information-process-
ing device is that packages of information enter
it in one state and leave it in another. We may as-
sume that both the initial and the final state are
stationary eigenstates of the same commuting set
of observables 0;, in whose values the informa-
tion resides. .

It is sometimes claimed® that this assumption is
inconsistent with the so-called “time-energy un-
certainty principle” §t5E > 7z, interpreted to imply
that 6f is the least possible time in which a sys-
tem can be prepared in a state whose energy has
variance 6E?; thus 6t would be infinite for energy
eigenstates. However, it has often been shown by
explicit examples [e.g., by Unruh?] that this inter-
pretation is simply false and that no such mini-
mum time exists.

In a recent paper,® Bekenstein showed that un-
der certain plausible assumptions the entropy-to-
energy ratio for spatially bounded systems al-
ways satisfies the inequality

S/(Ey< (A2, )

S is the entropy, (E) the expectation value of the
total renormalized energy, and A the area of the
smallest sphere circumscribing the system. The
symbols () denote a renormalized quantum ex-
pectation value and, where necessary, a statisti-
cal ensemble average. The units are such that

7 =c =1, This result may be of some importance
to our understanding of black-hole thermodynam-
ics though recent work of Unruh and Wald* strong-
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ly suggests the contrary. In any case it cannot
possibly have any relevance to the physics of non-
gravitating systems. In particular, Bekenstein’s
own attempt® to derive from (1) an upper bound on
the rate at which information can be processed by
an ideal computer is fallacious. I shall now show
that there can be no such bound.

The central argument in Bekenstein’s deriva-
tion of (1) is as follows. An ensemble of quantum
systems at fixed energy attains its maximum en-
tropy in thermodynamic equilibrium. It may then
be described by the partition function

26)= Sexp(-BE,). @)

E, is the total renormalized energy of the nth sta-
tionary state. The renormalized zero-point
(vacuum) energy E o 1s not in general zero and
Bekenstein conjectures that it is positive for all
reasonable bounded quantum systems. This con-
jecture (which I shall not contradict) is crucial
in what follows.

The mean renormalized energy and canonical
entropy of the ensemble (2) are given by the usual
formulas®”’

(Ey=—2"%2/58, ®)

S=1nZ +B8(E). (4)
Thus '

S Z1nZ

& P~ 6z ©)

Near absolute zero (3 - =), (E) approaches the
positive value E, and the third law of thermody-
namics states that S—~0, and so the entropy/ener-
gy ratio (5) must also approach zero. On the
other hand, from (5)

8 (S \_ Z2°InZ o 52
2 () = - . Q

It is clear from (2) than InZ is nonnegative for all
sufficiently small values of 3. Therefore the en-
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tropy/energy ratio, which is nonnegative definite,
increases with 8 for small 8. It follows by con-
tinuity that the ratio has an upper bound, depend-
ing only on the physical contraints on the system.
Bekenstein goes on to demonstrate, by means
of an ingenious argument (which I shall not re-
quire here), that the relevant constraint is the
system’s size and that (1), or something very like
it, is true of all bounded systems. He expresses
surprise that such an apparently far-reaching uni-
versal bound has previously gone unnoticed in
nonrelativistic thermodynamics. The reason, un-
fortunately, is that (1) is inapplicable as it stands
to nongravitating systems, since it refers to the
absolute value (E) of energy, which cannot be ob-
served without gravity. Although (1) does not con-
tain the gravitational constant, the fact that it is
not invariant under changes (E‘—-E+const) in the
zero point of energy reveals its true identity as a
purely general relativistic relation. In nongravi- 1

Z exp(BE,) =1 +expl- B(E, - E,)] +O(exp[ - B(E, - E
3[Z exp(BEo) ]/36 == (E1 —Eo) exp[— B(El _Eo)] +0(eXp[— BE, —Eo)]),

tational physics, the energy E enters observable
quantities only through energy differvences.

In thermodynamic equilibrium, for example,
E —EO is an important observable, namely the
total thermal energy. I am therefore led to in-
vestigate the properties of the ratio

'}"(48)":5(3)/<EA ‘Eo>69 (7)

which is meaningful even in the absence of grav-
ity. In analogy to (5) and (6) we have

_ Zexp(BE,)In[Z exp(BE )]
r6)=p- a[Z exp(BE,)]/38 ®)
and
37 (B)

9

_Z%exp(BE) n[Z exp(@E)] , & 4
“ oz exp@E )0 (& ~END O

For large values of 8, (2) implies that

D,

(10)

9%(Z exp(BE,))/9p% = (E .~ E,)* expl - B(E , —E )] + O(exp[- B(E , - E,)]),

and hence that 87 (3)/88 approaches unity for suf-
ficiently large B (this conclusion is unaffected if
the energy levels are degenerate). Thus, where-
as fundamental principles indeed require S/(&)
to be bounded they actually forbid the more ac-
cessible quantity »(g8) from so being. [1t is
claimed in Ref. 3 that the ground (vacuum) state
of the packet cannot be used to send information.
If this weve true, the effective »(8) (i.e., omitting
the ground state from the ensemble average)
would have to be bounded just like S/(E). How-
ever, it is not true.]

I now turn to the alleged bound imposed by (1)
on the speed of information processors. We shall
see that it is »(8), not S/{E), which is relevant.
Bekenstein applies the inequality (1) to a “pack-
age” of information of mean energy (E> in transit
through a processor. The amount of information
I (in bits) in the package cannot exceed S,./In2
where S, is an upper bound on the entropy of the
package. Bekenstein shows by geometrical rea-
soning that the information rate I satisfies

f<[/7<ﬂ<f>/1n2, (11)

where 7 is the transit time for the package,
which is a lower bound on the time required to
process information I. Thus the higher is the re-
quired rate of information processing, the larger

must be the energy of each information package.

But if (Bekenstein goes on to say) “as seems
probable, the energy accompanying each ‘mes-
sage’ cannot be recycled, the power dissipated
... gives rise to ... an ‘overheating’ problem.”
By considering the dependence of various cooling
mechanisms on the size, shape, and constitution
of the overheated region, he eventually arrives
at an approximate bound of 10" s™* on I, which
corresponds to about 10 elementary operations
per second for a computer dealing with nine-digit
decimal numbers.

The key evvoy in this analysis is the assump-
tion that the zevo-point enevgy of the information
package must be dissipated in the processor. In
fact, of course, it cannot be dissipated since it is
invisible to all but gravitational forces. The true
rate at which the processor is heated by Beken-
stein’s mechanism cannot possibly exceed &
-E,)/7, a quantity which, it follows from (10),
can be made arbitrarily small for fixed I by re-
ducing the temperature (increasing g) sufficiently.

Moreover, the assumption, made in both Refs.
1 and 3, that the energy in the incoming informa-
tion packet is necessarily dissipated in the proc-
essor is itself quite false. It is contrary to the
often reestablished principle®® 1° that a single
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observable or commuting set of observables O,
may be measured with arbitrarily great preci-
sion—and therefore if the packet is initially in an
eigenstate of éi no uncontrollable disturbance,
and therefore no entropy, need be created by the
measurement of 6,.. Thus an arbitrarily small
proportion of the packet’s energy need in princi-
ple be dissipated.

In practice the speed of a processor is of
course limited by the availability of desired coup-
lings. But barring quantum gravitational effects
(which may set in when the information packet is
so energetic that it approaches its Schwarzschild
radius, and perhaps give rise to a bound I < 10%
s~ 1), I conclude that there is no fundamental lim-
it on the speed of information processors.
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