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ABSTRACT
Motivation: Studying gene regulatory mechanisms in simple
model organisms through analysis of high-throughput genomic
data has emerged as a central problem in computational bio-
logy. Most approaches in the literature have focused either on
finding a few strong regulatory patterns or on learning descript-
ive models from training data. However, these approaches
are not yet adequate for making accurate predictions about
which genes will be up- or down-regulated in new or held-out
experiments. By introducing a predictive methodology for this
problem, we can use powerful tools from machine learning and
assess the statistical significance of our predictions.
Results: We present a novel classification-based method for
learning to predict gene regulatory response. Our approach is
motivated by the hypothesis that in simple organisms such as
Saccharomyces cerevisiae, we can learn a decision rule for
predicting whether a gene is up- or down-regulated in a par-
ticular experiment based on (1) the presence of binding site
subsequences (‘motifs’) in the gene’s regulatory region and
(2) the expression levels of regulators such as transcription
factors in the experiment (‘parents’). Thus, our learning task
integrates two qualitatively different data sources: genome-
wide cDNA microarray data across multiple perturbation and
mutant experiments along with motif profile data from regula-
tory sequences. We convert the regression task of predicting
real-valued gene expression measurements to a classification
task of predicting +1 and −1 labels, corresponding to up- and
down-regulation beyond the levels of biological and meas-
urement noise in microarray measurements. The learning
algorithm employed is boosting with a margin-based general-
ization of decision trees, alternating decision trees. This large-
margin classifier is sufficiently flexible to allow complex logical
functions, yet sufficiently simple to give insight into the com-
binatorial mechanisms of gene regulation.We observe encour-
aging prediction accuracy on experiments based on the Gasch
S.cerevisiae dataset, and we show that we can accurately
predict up- and down-regulation on held-out experiments.

∗To whom correspondence should be addressed.

We also show how to extract significant regulators, motifs and
motif-regulator pairs from the learned models for various stress
responses. Our method thus provides predictive hypotheses,
suggests biological experiments, and provides interpretable
insight into the structure of genetic regulatory networks.
Availability: The MLJava package is available upon request
to the authors.
Contact: cleslie@cs.columbia.edu
Supplementary: Additional results are available from
http://www.cs.columbia.edu/compbio/geneclass

INTRODUCTION
Understanding underlying mechanisms of gene transcrip-
tional regulation through analysis of high-throughput genomic
data, e.g. gene expression data from microarray experi-
ments and regulatory sequence data, has become one of the
central problems in computational biology, particularly for
simpler model organisms, such asSaccharomyces cerevisiae.
Efforts to identify regulatory elements in non-coding DNA
(Bussemakeret al., 2001; Hugheset al., 2000), models for
investigating co-occurrence of regulatory motifs and combin-
atorial effects of regulatory molecules (Pilpelet al., 2001), and
attempts to organize genes that appear to be subject to common
regulatory control into ‘regulatory modules’ (Ihmelset al.,
2002; Segalet al., 2003a) all define pieces of this complex
problem. Most recent studies of transcriptional regulation can
be placed broadly in one of the three categories: (1) statistical
approaches, which aim to identify statistically significant reg-
ulatory patterns in a dataset (Bussemakeret al., 2001; Pilpel
et al., 2001; Ihmelset al., 2002); (2) probabilistic approaches,
which try to discover structure in the dataset as formalized by
probabilistic models (often graphical models or Bayesian net-
works) (Segalet al., 2003a,b; Harteminket al., 2001; Pe’er
et al., 2001, 2002); and (3) linear network models, which
hope to learn explicit parameterized models for pieces of the
regulatory network by fitting to data (Yeunget al., 2002;
D’Haeseleeret al., 1999). These approaches are all useful
exploratory tools in the sense that they allow the user to gen-
erate biological hypotheses about transcriptional regulation
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that can then be tested in the laboratory. In general, however,
these approaches are not yet adequate for making accurate pre-
dictions about which genes will be up- or down-regulated in
new or held-out experiments. Therefore, it is difficult to com-
pare performance of different approaches or decide, based
on cross-validation experiments, which approach is likely to
generate plausible hypotheses.

The goal of our method is to learn a prediction func-
tion for the regulatory response of genes under different
experimental conditions. The inputs to our learning algorithm
are the gene-specific regulatory sequences—represented by
the set of binding site patterns they contain (‘motifs’)—and
the experiment-specific expression levels of regulators (‘par-
ents’). The output is a prediction of the expression state of
the regulated gene. Rather than trying to predict a real-valued
expression level, we formulate the task as a binary classifica-
tion problem, i.e. we predict only whether the gene is up- or
down-regulated. This reduction allows us to exploit modern
and effective classification algorithms. The learning algorithm
that we use is boosting with a margin-based generalization
of decision trees called alternating decision trees (ADTs).
Boosting, like support vector machines, is a large-margin clas-
sification algorithm that performs well for high-dimensional
problems. We evaluate the performance of our method by
measuring prediction accuracy on held-out microarray experi-
ments, and we achieve very good classification results in this
setting. Moreover, we show that the learned prediction trees
contain information that is both statistically significant and
biologically meaningful. These significant features, which
are associated with accurate generalization rather than simple
correlations in the training data, suggest regulators, motifs
and motif-regulator pairs that play an important role in gene
transcriptional regulation.

Among recent statistical approaches, the most successful
related approach is the REDUCE algorithm of Bussemaker
et al. (2001) for regulatory element discovery. Given gene
expression measurements from a single microarray experi-
ment and the regulatory sequenceSg for each geneg rep-
resented on the array, REDUCE proposes a linear model
for the dependence of log gene expression ratioEg on the
presence of regulatory subsequences (or ‘motifs’)Eg =
C + ∑

µ∈Sg
FµNµg, whereNµg is a count of occurrences

of regulatory subsequenceµ in sequenceSg, and theFµ

are experiment-specific fit parameters. We generalize bey-
ond the conditions of a single experiment by considering
pairs (motifg, parente), where the parent variable repres-
ents over- or under-expression of a regulator (transcription
factor, signaling molecule or protein kinase) in the experi-
ment e, rather than using motif information alone. Note,
however, that we use classification rather than regression as
in REDUCE.

Similar restriction of potential parents has been used with
success in the probabilistic model literature, including in the
regression-based work of Segalet al. (2003a) for partitioning

target genes into regulatory modules forS.cerevisiae. Here,
each module is a probabilistic regression tree, where internal
nodes of the tree correspond to states of regulators and each
leaf node prescribes a normal distribution describing the
expression of all the module’s genes given the regulator con-
ditions. The authors provide some statistical validation on
new experiments by establishing that selected module distri-
butions do have non-random correlation with true expression;
however, they do not focus on making accurate predictions
of differential expression as we do here. In our work, we
retain the distinction between regulator (‘parent’) genes and
target (‘child’) genes, as well as a model that can capture
combinatorial relationships among regulators; however, our
margin-based trees are very different from probabilistic trees.
Unlike in Segalet al. (2003a), we learn from both expres-
sion and sequence data, so that the influence of a regulator
is mediated through presence of regulatory element. We note
that in separate work, Segalet al. (2003b) present a prob-
abilistic model for combining promoter sequence data and a
large amount of expression data to learn transcriptional mod-
ules on a genome-wide level inS.cerevisiae, but they do not
demonstrate how to use this learned model for predictions of
regulatory response.

LEARNING ALGORITHM
Adaboost
Adaboost is a general discriminative learning algorithm inven-
ted by Freund and Schapire (Schapire, 2002). The basic idea
of Adaboost is to repeatedly apply a simple learning algorithm,
called the weak or base learner, to different weightings of the
same training set. In its simplest form, Adaboost is intended
for binary prediction problems where the training set consists
of pairs(x1,y1), (x2,y2), . . . , (xm,ym), xi corresponds to the
features of an example, andyi ∈ {−1,+1} is the binary label
to be predicted. A weighting of the training examples is an
assignment of a non-negative real valuewi to each example
(xi ,yi).

On iterationt of the boosting process, the weak learner is
applied to the training set with a set of weightswt

1, . . . ,wt
m

and produces a prediction ruleht that mapsx to {0, 1}. The
requirement on the weak learner is forht (x) to have a small
but significant correlation with the example labelsy when
measured using the current weighting of the examples. After
the ruleht is generated, the example weights are changed so
that the weak predictionsht (x) and the labelsy are decor-
related. The weak learner is then called with the new weights
over the training examples and the process repeats. Finally, all
the weak prediction rules are combined into a single strong
rule using a weighted majority vote. One can prove that if the
rules generated in the iterations are all slightly correlated with
the label, then the strong rule will have a very high correlation
with the label—in other words, it will predict the label very
accurately.
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Fig. 1. The Adaboost algorithm.

The whole process can be seen as a variational method
in which an approximationF(x) is repeatedly changed by
adding to it small corrections given by the weak prediction
functions. In Figure 1, we describe Adaboost in these terms.
We shall refer toF(x) as the prediction score in the rest of
the paper. The strong prediction rule learned by Adaboost is
sign[F(x)].

A surprising phenomenon associated with Adaboost is that
the test error of the strong rule (percentage of mistakes made
on new examples) often continues to decrease even after the
training error (fraction of mistakes made on the training set)
reaches zero. This behavior has been related to the concept
of a ‘margin’, which is simply the valueyF(x) (Schapire
et al., 1998). WhileyF(x) > 0 corresponds to a correct pre-
diction, yF(x) > a > 0 corresponds to a confident correct
prediction, and the confidence increases monotonically with
a. Our experiments in this paper demonstrate the correlation
between large margins and correct predictions on the test set
(see Results section).

Alternating decision trees
Adaboost is often used with a decision tree learning algorithms
as the base learning algorithm. We use Adaboost both to
learn the decision rules constituting the tree and to combine
these rules through a weighted majority vote. The form of
the generated decision rules is called an alternating decision
tree (ADT) (Freund and Mason, 1999).

We explain the structure of ADTs using the example given
in Figure 2, reproduced from Freund and Mason (1999). The
problem domain is heart disease diagnostics and the goal is to
predict whether an individual is healthy or sick based on 13
different indicators. The tree consists of alternating levels of
ovals ( prediction nodes) and rectangles (splitter nodes). The
numbers within the ovals define contributions to the prediction
score. In this example, positive contributions are evidence of
a healthy heart, negative contributions are evidence of a heart
problem. To evaluate the prediction for a particular individual,
we start at the top oval (0.062) and follow the arrows down.
We follow all the dotted arrows that emanate from prediction
nodes, but we follow only one of the solid-line arrows eman-
ating from a splitter node, corresponding to the answer (yes or
no) to the condition stated in rectangle. We sum the values in

all the prediction nodes that we reach. This sum represents the
prediction scoreF(x) above, and its sign is the prediction.

For example, suppose we had an individual for which
hdl=bad, b.press=0, pain=y, oldpeak=2, weight=300,
sex=m. In this case, the prediction nodes that we reach in
the tree are 0.062,−0.626, 0.425,−0.444,−0.536, 0.138,
and summing gives a score of−0.981, i.e. a very confident
diagnosis that the individual has a heart problem.

The ADT in the figure was generated by Adaboost from
training data. In terms of Adaboost, each prediction node rep-
resents a weak prediction rule, and at every boosting iteration,
a new splitter node together with its two prediction nodes is
introduced. The splitter node can be attached to any previous
prediction node, not only leaf nodes. Each prediction node is
associated with a weightα that contributes to the prediction
score of every example reaching it. The weak hypothesish(x)

is 1 for every example reaching the prediction node and 0 for
all others. The number in front of the conditions in the splitter
nodes of Figure 2 indicates the iteration number on which the
node was added. In general, lower iteration numbers indicate
that the decision rule is more important. We use this heuristic
to analyze the ADTs and identify the most important factors
in gene regulatory response.

ADTs for predicting regulatory response
For the problem of predicting differential gene expression, we
start with a candidate set of motifsµ representing known or
putative regulatory element sequence patterns and a candid-
ate set of regulators or parentsπ . For each (gene, experiment)
example in our gene expression dataset, we have two sources
of feature information relative to the candidate motifs and can-
didate parent sets: a vectorNµg of motif counts of occurrences
of patternsµ in the regulatory sequence of geneg, and the
vectorπe ∈ {−1, 0, 1} of expression states for parent genes
π in the experiment e. The data representation is depicted in
Figure 3.

Splitter nodes in our ADTs depend on decisions based on
(motif, parent) pairs. However, instead of splitting on real-
valued thresholds of parent expression and integer-valued
motif count thresholds, we consider only whether a motif
µ is present or not, and only whether a parentπ is over-
expressed (or under-expressed) in the example. Thus, splitter
nodes make boolean decisions based on conditions such as
‘motif µ is present and regulatorπ is over-expressed (or
under-expressed)’. Paths in the learned ADT correspond to
conjunctions (AND operations) of these boolean (motif, par-
ent) conditions. Full details on selection of the candidate
motifs and regulators and discretization into up and down
states is given in the Methods section.

METHODS
Dataset We use the Gaschet al. (2000) environmental stress
response dataset, consisting of cDNA microarray experiments
measuring genomic expression inS.cerevisiae in response to
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Fig. 2. An example ADT.

Fig. 3. Representation of data for regulatory response prediction.
Every (target gene, experiment) pair is assigned a label of+1 (up-
regulated, in white),−1 (down-regulated, in black) or 0 (baseline, in
gray) and is represented by the gene’s vector of motif counts (only
binary values shown here) and the experiment’s vector of regulator
expression states.

diverse environmental transitions. There are a total of 6110
genes and 173 experiments in the dataset, with all meas-
urements given as log2 expression values (fold change with
respect to unstimulated reference expression). We do not
perform a zero mean and unit variance normalization over
experiments, since we must retain the meaning of the true
zero (no fold change).

Motif set We obtain the 500 bp 5′ promoter sequences of all
S.cerevisiae genes from theSaccharomyces Genome Data-
base (SGD). For each of these sequences, we search for
transcription factor (TF) binding sites using the PATCH soft-
ware licensed by TRANSFAC (Wingenderet al., 2000). The
PATCH tool uses a library of known and putative TF bind-
ing sites, some of which are represented by position specific
scoring matrices and some by consensus patterns, from the
TRANSFAC Professional database. A total of 354 binding
sites are used after pruning to remove redundant and rare
sites.

Parent set We compile different sets of candidate regulators
to study the performance and dependence of our method on
the set of regulators. We restrict ourselves to a superset of
475 regulators (consisting of transcription factors, signaling
molecules and protein kinases), 466 of which are used in Segal
et al. (2003a) and 9 generic (global) regulators obtained from
Leeet al. (2002).

Due to computational limitations on the number of (motif,
parent) features we could use in training, we select smaller
subsets of regulators based on the following selection criteria.
We use 13 high-variance regulators that had an SD (in expres-
sion over all experiments) above a cut off of 1.2. The second
subset consists of the nine global regulators that are present
in Leeet al. (2002) studies but absent in the candidate list of
Segalet al. (2003a). We also include 50 regulators that are
found to be top ranking regulators for the clusters identified
in Segalet al. The union of these three lists gives 53 unique
regulators.

Target set and label assignment We discretize expres-
sion values of all genes into three levels representing
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down-regulation(−1), no change (0) and up-regulation(+1)

using cut-offs based on the empirical noise distribution around
the baseline (0) calculated from the three replicate unstimu-
lated (time=0) heat-shock experiments (Gaschet al., 2000).
We observe that 95% of the samples in this distribution
had expression values between+1.3 and−1.3. Thus, we
use these cut-offs to decide what we define as signific-
antly up-regulated(+1) and down-regulated(−1) beyond the
levels of biological and experimental noise in the microarray
measurements.

Note that although we train only on those (gene, experi-
ment) pairs which discretize to up- or down-regulated states,
we test (make predictions) on every example in a held-out
experiment by thresholding on predicted margins. That is, we
predict baseline if a prediction has margin below threshold
(see Results section).

We reduce our target gene list to a set of 1411 genes which
include 469 highly variant genes (SD> 1.2 in expression over
all experiments) and 1250 genes that are part of the 17 clusters
identified by Gaschet al. (2000) using hierarchical clustering
(eliminating overlaps).

Software We use the MLJava software developed by Freund
and Schapire, which implements the ADT learning algorithm.
We use the text-feature in MLJava to take advantage of the
sparse motif matrix and use memory more efficiently.

RESULTS
Cross-validation experiments
We first perform cross-validation experiments to evaluate clas-
sification performance on held-out experiments. We divide the
set of 173 microarray experiments into 10-folds, grouping rep-
licate experiments together to avoid bias, and perform 10-fold
cross-validation experiments using boosting with ADTs on all
1411 target genes.

We train the ADTs for 400 boosting iterations, during most
of which test-loss decreases continuously. We obtain an accur-
acy of 88.5% on up- and down-regulated examples averaged
over 10-folds (test loss of 11.5%), showing that predicting
regulatory response is indeed possible in our framework.

To assess the difficulty of the classification task, we also
compare to a baseline method,k-nearest neighbor classifica-
tion (kNN), where each test example is classified by a vote of
its kNNs in the training set. For a distance function, we use a
weighted sum of Euclidean distancesd[(g1, e1), (g2, e2)]2 =
wm‖mg1 −mg2‖2 +wp‖pe1

−pe2
‖2, wheremg represents the

vector of motif counts for geneg andpe represents the par-
ent expression vector in experimente. We try various weight
ratios 10−3 < (wm/wp) < 103 and values ofk < 20, and we
use both binary and integer representations of the motif data.
We obtain minimum test-loss of 34.4% atk = 17 for binary
motif counts and 31.3% atk = 19 for integer motif counts,

Fig. 4. Scatter plot of true expression values versus prediction scores
F(x). The scatter plot shows a high correlation between prediction
scores (x-axis) and true log expression values (y-axis) for genes on
held-out experiments.

Table 1. Confusion matrix: truth and predictions for all genes in the held-out
experiments, including those expressed at baseline levels

True Bins Predicted bins (%)
Down Baseline Up

Down 16.5 8.9 1.5
Baseline 9.3 32.4 6.3
Up 2.8 9.9 12.0

Examples are binned by assigning a thresholda = ±0.5 to expression and prediction
scores.

both for weight-ratios of 1, giving much poorer performance
than boosting with ADTs.

Since ADTs output a real-valued prediction scoreF(x) =∑T
t=1 αtht (x), whose absolute value measures the confid-

ence of the classification, we can predict a baseline label by
thresholding on this score, i.e. we predict examples to be up- or
down-regulated ifF(x) > a or F(x) < −a respectively, and
to be baseline if|F(x)| < a, wherea > 0. Figure 4 shows
expression values versus prediction scores for all examples
(up, down and baseline) from the held-out experiments using
10-fold cross-validation. The plot shows a significant correl-
ation between expression and prediction, reminiscent of the
actual regression task. (The correlation coefficient is 0.74 for
+1 and−1 examples in the test set and 0.59 for all examples.
While this correlation would not be considered high for a
regression problem, it is significant in our current setting.)
Assigning thresholds to expression and prediction values bin-
ning the examples into up, down and baseline we obtain the
confusion matrix in Table 1.
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Extracting features for biological interpretation
We describe below several approaches for extracting import-
ant features from the learned ADT models, and we suggest
ways to relate these features to the biology of gene
regulation.

Extracting significant features Features at nodes in the ADT
consist of motif–parent pairs. We rank motifs, parents and
motif–parent pairs by three different methods: by the boost-
ing iteration in which the feature first occurs (iteration score),
by the total number of occurrences of the feature in the final
tree (abundance score) and by the absolute prediction score
associated with the feature (prediction score). Ranking scores
are averaged over all 10-folds (see Supplementary website for
detailed results). Note that presence of a strong feature does
not necessarily imply a direct binding relationship between
parent and motif. Such a pair could represent an indirect
regulatory relationship (e.g. a kinase and the binding site of
the transcription factor that it phosphorylates) or some other
kind of predictive correlation, for example, co-occurrence
of the true binding site with the motif corresponding to the
feature.

The top ranking motif based on iteration score was the
STRE element of MSN2/MSN4, which is known to be a
regulatory element for a significant number of general stress
response target genes (Gaschet al., 2000). The other high
scoring motifs, include HSF1 (heat-shock), RAP1 (heat-shock
and osmolarity), TBP (TATA binding site), ADR1 (glycerol
metabolism and osmolarity), MIG1 (glucose metabolism and
carbon source based stress), REB1 (Pol-I transcription ter-
mination activity), GAL4 (galactose metabolism), YAP1
(peroxide stress) and GCN4 (amino acid biosynthesis and star-
vation response) binding sites, all of which are known to be
active in various kinds of stress responses.

Of the 53 candidate regulators, 37 appear in the ADTs of the
10-folds. The top-ranking regulator, based on both iteration
score and abundance score, is USV1 (YPL230W); this reg-
ulator was found by Segalet al. (2003a) as the top-ranking
regulator in 11 of their 50 regulatory modules. Other top
ranking regulators (Table 2) include PPT1, TPK1 (SRA3),
XBP1 and GCN20. It is interesting to note that while the
presence and absence of binding sites of some very important
stress factors like MSN2 and HSF1 (heat shock factor) are
identified as significant features (high motif iteration score)
in the ADTs, their mRNA expression levels do not seem
to be very predictive. HSF1 does not appear as a parent in
any of the ADTs, and MSN2 gets low abundance and iter-
ation scores as a parent, despite its importance as a stress
response regulator. Similar results are observed in the mod-
ules of Segalet al. (2003a), where HSF1 is not found in any
of the regulation programs and MSN2 is found in 3 of the 50
regulation programs but with low significance. If we examine
the expression profiles of HSF1, MSN2, USV1 and PPT1,
we find that the mRNA levels of MSN2 and HSF1 have quite

Table 2. Top scoring regulators for the 10-fold cross-validation experiment
and three special setups

10-folds Heat-shock Heat-shock
w/o USV1

H2O2

USV1 USV1 SRA3 USV1
XBP1 XBP1 XBP1 XBP1
SRA3 SRA3 PPT1 SRA3
PPT1 PPT1 DAL80 YAP1
GIS1 GIS1 GAC1 PPT1
YGL099W SLT2 GIS1 FAR1
GAC1 GIP2 SLT2 YGL099W
GCN20 GAC1 WTM1 SLT2
MTH1 DAL80 SRD1 GAC1
HAP4 SRD1 GAT1 MTH1
YGL096W GAT1 GIP2 GIS1

For additional results on extracted features, refer to the Supplementary website.

small fluctuations (rarely greater than 2-fold change) and fall
mostly within the baseline state, while the expression levels
of USV1 or PPT1 show much larger variation over many
experiments (Fig. 5). It is known that MSN2 is regulated post-
translationally by TPK1, which is identified as an important
parent in the ADTs and is found associated with the MSN2
binding site as a motif–parent pair. Thus in this case, where the
activity of a regulator is itself regulated post-transcriptionally,
we see a clear advantage of using motif data along with mRNA
expression data.

‘In silico’ knock-outs By removing a candidate from the reg-
ulator list and retraining the ADT, we can evaluate whether
test loss significantly decreases with omission of the parent
and identify other weaker regulators that are also correlated
with the labels. We investigatein silico knock-outs in the
biologically motivated experiments described below.

Biological validation experiments
We designed five different training and test sets of selected
microarray experiments based on observations of similarity
and differences between stresses by Gaschet al. (2000), and
we used these experiments to study the response to specific
types of stress in our framework. We present results for three
of these studies below (see Supplementary website for the
other two experiments). By comparative analysis of the trees
learned from these sets, we find and validate regulators that
are associated to regulation programs activated by different
stresses.

Heat-shock and osmolarity stress response In the first study,
we trained on heat-shock, osmolarity, heat-shock knockouts,
over-expression, amino acid starvation experiments, and we
tested on stationary phase, simultaneous heat-shock and hypo-
osmolarity experiments.
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Fig. 5. Comparison of expression profiles (173 experiments) of USV1, MSN2, HSF1 and PPT1. The mRNA expression levels of USV1
and PPT1 are informative, with∼50 and 35% of experiments (respectively) showing over 2-fold expression change over wild-type. The
expression levels for MSN2 and HSF1 fall mostly in the baseline state, with only∼6 and 5% of experiments (respectively) showing at least
2-fold expression change. While MSN2 and HSF1 are not identified as high scoring parents in the learned trees, their binding sites occur as
high scoring motifs.

We observe a low test loss of 9.3%, supporting the hypo-
thesis that pathways involved in heat-shock and osmolarity
stress appear to be independent and the joint response to both
stresses can be predicted easily (Gaschet al., 2000). We also
confirm that the regulatory response for stationary phase (test
set) is very similar to that of heat-shock (training set) (Gasch
et al., 2000). The high scoring parents are USV1, XBP1,
TPK1, PPT1, GIS1, GAC1 and SLT2. The connection of
osmolarity response to the HOG and other MAP kinase path-
ways is well known, and it is interesting to note that most
of these regulators are in fact signaling molecules. Also, the
osmolarity response is strongly related to glycerol metabolism
and transport and hence closely associated with gluconeogen-
esis and glucose metabolism pathways. We find the binding
sites of CAT8 (gluconeogensis), GAL4 (galactose metabol-
ism), MIG1 (glucose metabolism), GCN4 (regulator of HOG
pathway and amino acid metabolism), HSF1 (heat-shock
factor), CHA4 (amino acid catabolism), MET31 (methionine
biosynthesis), RAP1 and MSN2/MSN4 to have high iteration
scores; these regulators are all related to the stress conditions
in the training set.

USV1 ‘in silico’ knockout Using the same train and test
microarrays as in the heat-shock/osmolarity set-up, we per-
form a second study by removing one of the strong regulators,
USV1, from the parent set and retraining the ADT. We get a

minor but significant increase in test error from 9.3 to 11%.
Regarding structural changes in the ADT, we observe that the
overall hierarchy of the features does not change significantly:
TPK1, XBP1, PPT1 and GIS1 remain the highest scoring par-
ents. We also find that 305 target genes change prediction
labels. Gene Ontology (GO) annotation enrichment analysis
of these target genes reveal the terms cell wall organization
and biogenesis, heat-shock protein activity, galactose, acetyl-
CoA and chitin metabolism and tRNA processing and cell
growth. These match many of the terms enriched by analyz-
ing GO annotations of genes that changed significantly in a
microarray experiment by Segalet al. (2003a) with stationary
phase induced in a USV1 knockout.

Pleiotropic response to diamide For the third study,
we trained on heat-shock, heat-shock knockouts, over-
expression, H2O2 wild-type and mutant, menadione, DTT
experiments, and we tested on diamide experiments.

Gaschet al. (2000) consider the diamide response to be
a composite of responses to the experiments in the training
set. We observe a moderate test loss of 16%, suggesting that
this pleiotropic response is more complex than the simpler
additive responses to heat-shock and osmolarity. We observe
the emergence of an important motif–parent feature: YAP1
is directly associated with its ARE-binding site (Y$TRX2)
as a high scoring regulator that is absent in the ADTs of
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both previous studies. This finding is consistent with known
biology, since YAP1 plays a specific role in peroxide and
superoxide response (present in the training set) (Gaschet al.,
2000). We also find the PDR3 (menadione-drug response)
binding site to be a high scoring motif.

DISCUSSION
While encouraged by the performance of our method, we
believe further work is likely to yield much more compre-
hensive and accurate models of the regulatory networks of
yeast and other simple organisms.

One main direction for improvement is to increase the com-
putational efficiency of our software so that we can scale up
both the size of the training set and the feature space. Since the
Gasch dataset that we used here only contains experiments for
environmental stress response, many other regulatory path-
ways are most probably not activated and therefore cannot
be modeled by analysis of this dataset alone. We plan to
pursue more extensive computational experiments on other
diverse yeast datasets, such as those available through NCBI’s
Gene Expression Omnibus and the SGD. At the same time,
we hope to increase the number of parents to include the com-
plete putative list of about 500 regulators, in order to identify
the possible roles of additional regulatory proteins. Since we
are using (motif, parent) feature pairs, increasing the number
of parents increases the feature space and memory require-
ments by a multiplicative factor. Two promising directions for
improvement are (1) using data structures more appropriate
for our pairwise interaction features and (2) using weighted
sampling to reduce the size of the memory required for the
training data.

Another potential advance would be a more careful treat-
ment of the raw data. In these preliminary experiments, we
used a simple noise model based on wild-type replicates,
and we were able to learn to predict large up- or down-
regulation response using thresholds based on this model.
However, while log expression ratio data (perturbation/wild-
type) gives a natural input variable for our analysis, better
signal-to-noise ratio is likely to be achieved by taking into
account the excitation levels separately. In particular, using
an intensity-sensitive noise model could allow us to estab-
lish more meaningful thresholds for more of the genes. A
more complicated issue is the fact that we do not use baseline
expression examples for training, and therefore we restrict to
the subset of genes that show variation across stress response
experiments for our training and test sets. Ideally, however, we
would like to predict regulatory response for all genes (includ-
ing non-responding genes), which will likely mean changing
the formulation of the learning task so that we include baseline
examples in training.

A further refinement would be to treat parent and child
excitation levels as continuous rather than binary quantities.
Similarly, the number of motifs in the regulatory region, rather

than merely their presence/absence, and the spatial relation-
ship between them could be taken into account. While these
extensions could potentially yield much more realistic mod-
els, they require substantial algorithmic changes and should
be done carefully so as to avoid overfitting.

While we showed how to extract significant motifs, regu-
lators, and motif-regulator pairs from the ADTs, further work
is needed to obtain more detailed information from these
predictive models. It is plausible that the trees contain inform-
ation about combinatorial relationships between regulators
or between regulatory elements, but it is not clear how to
disambiguate independent effects from combinatorial ones.
One possible approach could be to rank collections of two
or more features occurring in paths in the ADTs and check
whether motifs in over-represented paths tend to co-occur
in regulatory regions, giving evidence of combinatorial rela-
tionships. Another approach is to examine more carefully the
contributions of different features to the prediction score for
various target genes. While our learning method does not yield
a descriptive network model that can be easily visualized,
we believe that the predictive model approach enables new
possibilities for analysis and understanding of gene regulation.
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