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ABSTRACT
Motivation: Recent technological advances such as cDNA
microarray technology have made it possible to simulta-
neously interrogate thousands of genes in a biological
specimen. A cDNA microarray experiment produces a
gene expression ‘profile’. Often interest lies in discovering
novel subgroupings, or ‘clusters’, of specimens based on
their profiles, for example identification of new tumor tax-
onomies. Cluster analysis techniques such as hierarchical
clustering and self-organizing maps have frequently been
used for investigating structure in microarray data. How-
ever, clustering algorithms always detect clusters, even
on random data, and it is easy to misinterpret the results
without some objective measure of the reproducibility of
the clusters.
Results: We present statistical methods for testing for
overall clustering of gene expression profiles, and we
define easily interpretable measures of cluster-specific re-
producibility that facilitate understanding of the clustering
structure. We apply these methods to elucidate structure
in cDNA microarray gene expression profiles obtained on
melanoma tumors and on prostate specimens.
Availability: Software to implement these methods is
contained in BRB ArrayTools microarray analysis package
available from http://linus.nci.nih.gov./BRB-ArrayTools.html.
Contact: lm5h@nih.gov

INTRODUCTION
The cDNA microarray technology allows one to measure,
for thousands of genes, the relative abundance of each
gene’s mRNA in a test sample compared to its abundance
in a reference sample using a two-color fluorescent probe
hybridization system (Schena et al., 1995). The gene
expression ‘profiles’ generated by this technique can be
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analyzed by clustering methods to try to identify novel
subgroupings, or ‘clusters’, of specimens. Microarray
analyses have already been useful in identifying tumor
taxonomies (Khan et al., 1998; Alizadeh et al., 2000;
Bittner et al., 2000). Frequently used cluster analysis
techniques include hierarchical clustering (Eisen et al.,
1998) and self-organizing maps (Tamayo et al., 1999).
However, clustering algorithms always detect clusters,
even on random data, and it is imperative to conduct some
statistical assessment of the strength of evidence for any
clustering and to examine the reproducibility of individual
clusters. Here we present statistical methods for testing for
the existence of meaningful clustering, and we describe
some easily interpretable cluster-specific reproducibility
measures that we have developed and found useful for
elucidating and clustering structure.

We demonstrate the methods by applying them to two
different gene expression profile data sets. The first data
set consists of gene expression profiles for 31 melanoma
tumors (Bittner et al., 2000), and the second data set
consists of profiles obtained from 25 prostate specimens
(Luo et al., 2001). The gene expression profile obtained
for a specimen consists of log transformed normalized
expression ratios measured on the full set of genes
represented on the microarray. For a given spot (e.g. gene)
on an array, the expression ratio is formed by dividing
the fluorescent signal measured for the test sample at that
spot by the fluorescent signal measured from the reference
sample. The test samples are fluorescently tagged cDNA
samples derived from mRNA isolated from the tumors
or other specimens of interest. In the examples we will
consider, the reference sample is derived from a common
pool of mRNA and tagged with a fluorescent dye, different
from the dye used for the test samples. The reference
sample used in the melanoma example was a pool of
RNA from a non-tumorigenic revertant of a tumorigenic
melanoma (Trent et al., 1990). The reference sample used
in the prostate example was composed of a pool of RNA
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from two benign prostatic hyperplasia samples. In general,
the reference pool may be mRNA derived from normal
tissue or a mixture of mRNA derived from a collection of
tumor cell lines.

Our focus is on hierarchical agglomerative clustering
methods, although the same general principles could be
applied to any of the numerous clustering methods avail-
able (Gordon, 1999; Jain and Dubes, 1988). In brief, a
distance metric is defined between the profiles of each pair
of specimens to be clustered. The hierarchical agglomera-
tive algorithm proceeds by merging the two closest (most
similar) specimens first, and then successively merging
specimens or groups of specimens in order of greatest sim-
ilarity. Two distance metrics commonly used in clustering
gene expression profiles are Euclidean distance and one
minus the Pearson correlation coefficient. Euclidean dis-
tance measures in absolute terms the closeness of two pro-
files, whereas correlation measures the similarity of pat-
terns in the sense of how closely the values in one profile
can be approximated by a linear function (scalar multiple
or shift) of the values in the other profile. For example, if
the expression ratio measurements for all genes for one
tumor were exactly 3 times their counterpart ratios for
another tumor, those two tumors would be considered dis-
tant using a Euclidean distance metric but close using the
distance metric of one minus the correlation. See Gor-
don (1999, Chapter 2) for discussion of additional distance
metrics.

The end result of a hierarchical clustering is a tree struc-
ture depicted by a dendrogram. An example dendrogram
is presented in Figure 1a. The dendrogram in Figure 1a
resulted from hierarchical cluster analysis, using the dis-
tance metric of one minus the Pearson correlation coeffi-
cient, applied to log expression ratios obtained from mi-
croarray experiments performed on 31 melanoma tumors
(Bittner et al., 2000). There were 3799 genes with mea-
surements meeting the quality criteria used in these analy-
ses. At the bottom of the tree, each of the original spec-
imens constitutes its own cluster and, at the top of the
tree, all specimens have been merged into a single clus-
ter. The tree is ‘rooted’ at the top. Mergers between two
specimens, or between two clusters of specimens, are rep-
resented by horizontal lines connecting them in the den-
drogram. The height of each horizontal line represents the
distance between the two groups it merges. See Gordon
(1999, pp. 69–72) for a discussion of alternative dendro-
gram formats.

It is not obvious by looking at the dendrogram in Fig-
ure 1a what are the most meaningful clusters. Stopping the
agglomerative process too early will result in a large num-
ber of small clusters. Allowing agglomeration to continue
too long will result in fewer, larger clusters, potentially
obscuring important structure or subgroups. The decision
about where to stop the process is equivalent to where

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

   
   

   
   

 1
co

rr
el

at
io

n

a

18 20 25 22 23 21 24 17 19 16 8 9 12 5 14 4 13 3 7 1 2 6 15 10 11

2
4

6
8

10
12

14
16

b

   
   

   
 E

uc
lid

ea
n 

di
st

an
ce

Fig. 1. (a) Dendrogram resulting from hierarchical agglomerative
cluster analysis using average linkage and distance metric equal
to one minus the Pearson correlation applied to melanoma
data. Dashed box outlines the 19 tumor cluster of interest.
(b) Dendrogram resulting from hierarchical agglomerative cluster
analysis using complete linkage and Euclidean distance applied to
prostate data.

to ‘cut’ the dendrogram. In viewing this dendrogram or
the results from any other clustering technique applied to
any other data, one must ask whether any of the observed
clusters are believable, and if so, which ones.

As a first step in the investigation of the clustering struc-
ture, we recommend that a global test of clustering be
performed to determine the strength of evidence for any
clustering. It is expected a priori that expression profiles
for genes would cluster because, for example, there are
classes of genes known to be co-regulated. In contrast,
clustering of an arbitrarily selected set of specimen pro-
files, is not necessarily expected. The finding of clusters of
expression profiles for specimens of morphologically and
histologically similar tumors is a potentially important ob-
servation, but one which requires statistical verification. If
the significance tests provide substantial evidence for clus-
tering, we employ two cluster reproducibility measures
that can aid in assessing the meaningfulness of individual
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clusters of interest. The first measure we refer to as the
robustness (R) index, and the second measure we call the
discrepancy (D) index. The fundamental idea behind both
of these methods is to identify clusters likely to be pre-
served if new data were collected on the same specimens.
In effect, we want to assess the stability of the observed
clusters in the background of experimental noise. Details
of the methods are described in the next section.

METHODS
Global statistical test of clustering
We test whether the gene expression profiles are consistent
with having arisen from a single multivariate Gaussian
distribution, i.e. that there is no meaningful clustering. The
test we propose is based on examination of the Euclidean
distances between specimens in principal components
space. If the distance metric of interest is one minus
the Pearson correlation, the test should be applied to the
standardized expression profiles. Converting the problem
to one involving Euclidean distances allows us to use
methods based on inter-event distances that have been
derived and studied in the context of Euclidean distance
(Diggle, 1983, Section 2.2). This conversion is justified
because the one minus Pearson correlation distance metric
is proportional to the square of the Euclidean distance
metric computed on the standardized expression profiles.
The standardization is applied by mean centering and
standard deviation scaling the expression levels of each
specimen prior to applying the principal components
transformation.

The test can be described as follows. The log ratio or
standardized log ratio profile data are first transformed
to the principal components space (Johnson and Wichern,
1988) to simplify subsequent calculations by adjusting for
the effects of correlations among genes. The maximum
number of principal components that can be calculated
is the smaller of the number of genes and one less
than the number of specimens. Typically in microarray
studies the number of genes assessed far outnumbers the
number of specimens analyzed, so this maximum would
be one less than the number of specimens. We base our
test on only the first three principal components. This is
to avoid data sparseness in the high dimensional space
that would lead to instability in the properties of the
test. We found through a variety of simulation studies
that using three principal components led to tests with
good properties. We expect that many important clustering
patterns could be detected with examination of only a
few principal components, and this tends to makes the
results of the test consistent with the three-dimensional
principal components visualization commonly used for
microarray data. In a related context, Silverman (1986,
pp. 93–94) has recommended that one could reasonably

perform non-parametric density estimation with a few
dozen to several dozen observations of two- or three-
dimensional data. However, a few hundred to several
hundred observations would be required for adequate
density estimation for four- or five-dimensional data.
Therefore, detecting statistically significant clustering in
high dimensional data. Therefore, detecting statistically
significant clustering in high dimensions would likely
require profiling greater numbers (many hundreds or even
thousands) of specimens than is common.

If the profile data have an approximate Gaussian distri-
bution, then the principal components will also have ap-
proximate Gaussian distributions. The global test we con-
sider compares the distribution of nearest neighbor dis-
tances for the observed data in the space formed by the first
three principal components to the distribution of nearest
neighbor distances simulated under a Gaussian distribu-
tion (corresponding to the null hypothesis) in that space.
We compute the mean and standard deviation for each of
the coordinates in the three-dimensional principal compo-
nents space. We generate each coordinate of the simulated
data as normally distributed with mean and standard devia-
tion as estimated from the observed principal components.
The ability to generate the points in the principal compo-
nents space one coordinate at a time is a by-product of the
orthogonality of the principal components. A collection of
many Gaussian data sets is generated in this way.

To quantify the clustering pattern in the real and sim-
ulated data sets, we examine the distribution of ‘near-
est neighbor’ (NN) distances. For each specimen rep-
resented as a point in the three-dimensional principal
components space, we compute the Euclidean distance
from that specimen to the nearest other specimen. We
then compute the empirical distribution function (EDF)
of these distances. For any distance d, the EDF is the
proportion of NN distances that are less than or equal to d.
We compare the nearest neighbour empirical distribution
function (NN EDF) for the observed data to that expected
under the null hypothesis, and we quantify the difference
by a squared difference discrepancy measure (Diggle,
1983, Equation 2.3.2). Specifically, let Ĝ1(y) be the NN
EDF computed from the observed data, and let Ĝi (y) :
i = 2, . . . , s be the NN EDF’s computed from the s-1
data sets simulated under the null distribution (distribution
corresponding to the null hypothesis). Calculate Gi (y) =
(s − 1)−1 ∑

j �=i Ĝ j (y) to serve as an estimate of the
expected NN EDF under the null distribution that is inde-
pendent of the i th simulated EDF. The squared difference
discrepancy measure ui = ∫ {Ĝi (y) − Gi (y)}2 dy is
a measure of how different the i th NN EDF is from
that expected under the null distribution. We compute
this integral numerically by evaluating the integrand at
30 equally spaced points along the range of the nearest-
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neighbor distances and computing the Riemann sum. If
u1 is unusually large compared to the distribution of
the s − 1 ui values that were generated under the null
distribution, then there is evidence that the observed data
were generated under a distribution different than that
null distribution. The Monte Carlo p-value for a test of
clustering (relative to the expected NN distance pattern
under the null distribution) is obtained as the proportion
of the s ui values that are at least as big as that computed
from the observed data. Typically, we take s = 10 000 in
order to obtain a high degree of accuracy on the Monte
Carlo p-value. For example, if 3% of the s ui values are at
least as large as u1 (which is calculated from the observed
data), the calculated Monte Carlo p-value would be 0.03.
The Monte Carlo p-value is interpreted as any other p-
value, so small values such as values less that 0.05 are
commonly called significant.

Calculation of the R-index and D-index
For assessing cluster-specific reproducibility, we utilize
the general approach of data perturbation to assess clus-
tering stability, a technique that has been used by others in
different settings (Rand, 1971; Gnanadesikan et al., 1977;
Fowlkes and Mallows, 1983). We simulate ‘new data’ by
adding artificial experimental error in the form of Gaus-
sian white noise to the existing log ratio measurements.
Error distributions other than Gaussian could be used, but
the Gaussian error assumption is a useful approximation in
many settings. Wolfinger et al. (2001) have reported that
they have found Gaussian assumptions to be reasonable
for several data sets they examined. In practice, one can
check assumptions of Gaussian error on replicate data sets
using statistical tests for normality, assessing skewness
and kurtosis, and examining graphical displays such as
normal quantile–quantile plots. An appropriate variance
to use in generating this Gaussian experimental error can
be estimated from the data. Our estimate is based on
an assumption that a majority of the genes are not truly
differentially expressed across tumors. Any differences
observed in non-differentially expressed genes would be
due to experimental noise. We calculate the variance of the
log ratio across experiments for each gene in the data set
and use the median (50th percentile) of the observed distri-
bution of variances as the experimental variance estimate.
The median should be robust to contamination by modest
numbers of large standard deviation estimates that reflect
true tumor-to-tumor differences rather than experimental
noise. A lower percentile such as 10th or 25th may be a
good choice if larger numbers of differentially expressed
genes are expected.

The result is a new set of ‘perturbed’ data. We then
re-cluster the perturbed data and compute our indices
to measure how much the clustering has changed. We
repeat the perturbation–clustering cycle numerous times

and estimate the stability of the original clustering to data
perturbations. Our R-index measures the proportion of
pairs of specimens within a cluster for which the members
of the pair remain together in the re-clustered perturbed
data. Our D-index measures the number of discrepancies
(additions or omissions) comparing an original cluster to
a best-matching cluster in the re-clustered perturbed data.

Consider calculation of the R-index for the set of k clus-
ters resulting from a cut of a dendrogram. We perturb the
data by adding to the log ratio measurements independent,
normally distributed random numbers with mean zero and
variance equal to the estimated experimental noise vari-
ance. After perturbing, the data is re-clustered to obtain
k clusters. If a cluster i of the original data contains ni
specimens, it can be viewed as containing mi = ni (ni −
1)/2 pairs of specimens. If the clusters are robust, then
members of a pair should fall in the same cluster in the
re-clustered data. Let ci denote the number of these mi
pairs with members falling in the same cluster in the re-
clustered perturbed data. Then ri = ci/mi is a measure
for the robustness of the i th cluster in the original data
set. An overall measure of the set of k clusters is R =
(ci + c2 + · · · + ck)/(m1 + m2 + · · · + mk). Note that
this overall measure is a weighted average of the cluster-
specific measures, weighted by cluster size. In comput-
ing the overall measure, we exclude singleton clusters in
the original data. The robustness indices can be averaged
over a large number of cycles of perturbations and re-
clusterings. For a singleton cluster in the original data,
it can be informative to record the proportion of times
it remains a singleton as opposed to being merged into
another cluster in the perturbed data.

The D-index is computed somewhat differently. For
each cluster of the original data, determine the cluster of
the perturbed data that is the ‘best match’, defined as the
one having the greatest number of elements in common
with the original cluster. (Ties are broken by choosing
the match with the least number of added elements.) The
discrepancy can be subdivided into one of two types—
either specimens in the original cluster that are not in
the best match perturbed cluster (omissions), or elements
in the best match cluster that were not in the original
cluster (additions). It can be helpful to keep track of these
two types separately, and this is one potential advantage
of the D-index compared to the R-index. An overall
measure of discrepancy is the summation of cluster-
specific discrepancy indices. These indices can also be
averaged over a large number of cycles of perturbations
and re-clusterings. In computing the discrepancy index,
we have found it useful to consider cuts of the perturbed
data tree with similar, in addition to identical, numbers of
clusters as in the original data, and to report the D-index
as the minimum over the several cuts considered.
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RESULTS
We first applied these cluster assessment methods to
the melanoma data of Bittner et al. (2000) described
previously. For the global test of clustering, we obtained
a p-value of 0.003. Figure 2 (ftp://linus.nci.nih.gov/pub/
techreport/TechReport2 Fig2.pdf) shows the observed NN
EDF (nearest neighbor empirical distribution function)
plotted versus that expected under the Gaussian null
distribution. Our observed data exhibit a significant excess
of small NN distances compared to a single multivariate
Gaussian distribution. We interpret this as evidence of
clustering pattern, and we proceed with examination of
cluster-specific reproducibilities.

For examination of individual clusters, we computed
the robustness and discrepancy indices. Of particular
interest to Bittner et al. (2000) was the 19-member cluster
containing tumors 6–24 as shown in the dashed box in
Figure 1a. That group of 19 tumors occurs as a stand-
alone cluster at cuts of 8, 9 and 10 clusters. The estimated
experimental noise standard deviation (square root of
median estimated variance) estimate was 0.16 (log base
10 scale) for this data. Table 1 presents cluster-specific
reproducibility measures for clusters formed at cuts of 7
and 8 clusters. Cutting the tree at 7, we see that the cluster
with elements 5–24 (composed of Bittner et al.’s major
cluster and one additional tumor) is highly reproducible.
With the exception of the cluster containing tumors 2 and
3, all of the other individual clusters formed at this cut
of the tree are reproducible (robustness > 0.90). Cutting
the tree at 8 clusters, the cluster containing tumors 2 and
3 continues to have very poor reproducibility (robustness
= 0.001). Furthermore, it is evident that, on average,
there is an addition of one member to the collection 6–24.
The observation of a large average number of additions
(17) to the singleton cluster containing tumor 5, along
with inspection of several of the perturbed data trees (not
shown), reveals that tumor 5 is frequently merged with
tumors 6–24 when cutting to obtain 8 clusters. Thus, there
appears to be strong evidence for reproducibility of a large
cluster containing tumors 5–24. These results support
Bittner et al.’s identification of subsets of melanoma
within the data set, though they suggest a minor refinement
with tumor 5 being included in the major cluster of non-
invasive melanomas (Bittner et al., 2000).

The second data set to which we applied our cluster
assessment methods is that of Luo et al. (2001) which con-
sists of gene expression profiles obtained from 25 prostate
specimens, 16 of which were prostate cancer and 9 of
which were Benign Prostatic Hyperplasia (BPH). These
prostate expression profiles were obtained using cDNA
microarrays consisting of 6500 human genes. Quality
scores were provided for each log ratio measurement, with
a score of zero indicating that the log ratio was deemed

unreliable and should not be used. We did not include in
the analysis any genes having quality scores of zero in
more that 7 of the 25 specimens. This left 2817 genes for
analysis. Then, we imputed any remaining missing val-
ues using a k-nearest neighbors algorithm (KNNimpute,
Troyanskaya et al., 2001): a missing log-ratio for gene
j in specimen i was imputed with a weighted average
of log ratios from 10 other genes in specimen i , where
the 10 genes used were those whose expression profiles
across specimens were closest (in Euclidean distance) to
the profile of gene j , and the inverse Euclidean distance
was used as the weight in averaging.

Figure 1b presents the dendrogram for the prostate
data. Applying the global test, we find evidence that
these expression profiles do not arise from a single
Gaussian distribution (p = 0.037). Figure 3 (ftp://linus.
nci.nih.gov/pub/techreport/TechReport2 Fig3.pdf) shows
the observed NN EDF plotted versus that expected under
the Gaussian null distribution. Our observed data exhibits
an excess of small NN distances compared to a single
multivariate Gaussian distribution. The above results were
obtained using log ratios which had been median centered
within each array. Without the median centering, the
calculated p-value for the global test was p = 0.0057.

Table 2 presents cluster-specific reproducibility mea-
sures for clusters formed at cuts of 2, 3 and 4 clusters
(reproducibility continues to deteriorate for larger number
of clusters). The estimated experimental noise standard
deviation (log 10 scale) for this data was 0.13. Cutting the
tree at 3, we see that all clusters are highly reproducible,
including the singleton cluster containing specimen #16.
Specimens 1–16 were the 16 prostate cancer specimens
17–25 were all BPH specimens. Cutting the tree at four
clusters, the discrepancies begin to increase, suggesting
that any claims based on this data that there are two
subtypes of prostate cancer would not be strongly sup-
ported by this data set. Our reproducibility assessment
supports the conclusions of Luo et al. (2001) that the
prostate cancers appear biologically distinct from the BPH
specimens, but it also directs attention to the possibility
that there is something unique about cancer specimen #16.
We were not able to identify any obvious data quality
problems with this array (such as an unusually large
number of bad spots) that might explain this finding.
Further investigation would be needed to determine if this
specimen has any particular biological significance.

DISCUSSION
We have suggested a two-step approach to the evaluation
of sample clustering. First we perform a global test
for clustering, and if pattern is suggested, we follow
with examination of cluster-specific reproducibilities. We
have assessed the global test by simulation under a
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Table 1. Cluster-specific reproducibility measures for the melanoma dataa

Cluster Tumor members Robustnessc Omissions Additions

Cut at 7 clusters R-index = 0.993, D-index = 1.421b

1 1 0.927 0.000 0.000
2 2–3 0.121 0.863 0.000
3 4 1.00 0.000 0.000
4 5–24 1.00 0.000 0.013
5 25 0.997 0.000 0.000
6 26–27 0.984 0.016 0.180
7 28–31 0.911 0.248 0.101

Cut at 8 clusters R-index = 0.991, D-index = 19.590b

1 1 0.999 0.000 0.001
2 2–3 0.001 0.894 0.001
3 4 0.968 0.000 0.000
4 5 0.000 0.000 17.29
5 6–24 1.00 0.001 0.910
6 25 1.00 0.000 0.000
7 26-27 0.966 0.064 0.011
8 28–31 0.902 0.411 0.003

a A hierarchical agglomerative clustering algorithm using average linkage and distance metric equal to one minus the Pearson correlation was applied. One
thousand simulated perturbed data sets were generated using a noise SD = 0.16. b The D-index, omissions, and additions computed here allow searching
over numbers of clusters in the perturbed data ranging from two less to two more than the number of clusters considered in the original data. c The reported
robustness measure for a singleton cluster is the proportion of perturbed data clusterings for which it remained a singleton in the perturbed data clustering.

Table 2. Cluster-specific reproducibility measures for the prostate dataa

Cluster Tumor members Robustnessc Omissions Additions

Cut at 2 clusters R-index = 0.946, D-index = 2.621b

1 1–16 0.938 0.528 0.574
2 17–25 0.973 0.198 1.329

Cut at 3 clusters R-index = 0.984, D-index = 2.589b

1 1–15 1.00 0.098 0.719
2 16 1.00 0.000 0.000
3 17–25 0.938 0.236 1.536

Cut at 4 clusters R-index = 0.923, D-index = 2.939b

1 1–7, 10, 11, 13–15 0.905 0.698 0.461
2 8, 9, 12 0.899 0.182 0.635
3 16 1.00 0.000 0.000
4 17–25 0.958 0.286 0.677

a A hierarchical agglomerative clustering algorithm using complete linkage with Euclidean distance was applied. One thousand simulated perturbed data sets
were generated using a noise SD = 0.13. b The D-index, omissions, and additions computed here allow searching over numbers of clusters in the perturbed
data ranging from two less to two more than the number of clusters considered in the original data. c The reported robustness measure for a singleton cluster
is the proportion of perturbed data clusterings for which it remained a singleton in the perturbed data clustering.

variety of situations. We generated data from multivariate
Gaussian distributions in the original high-dimensional
gene space using a variety of covariance matrices and
means, and we found that the percent of test rejections
was consistent with the nominal 0.05 level or less.
Also, the test had good power in the several multiple
cluster situations we examined unless the clusters were
very close to one another, were extremely elongated, or

contained very few members. Even under a few non-
Gaussian multiple cluster situations we examined, the
test maintained good properties. We speculate that this
robustness may be due to the fact that even somewhat
non-Gaussian data may appear approximately Gaussian
in the principal components space because the principal
components are formed by taking linear combinations
over a very large number of genes. The global test can
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be sensitive to outliers, but one should be able to identify
these situations by following up with the cluster specific
reproducibility assessment, and such outliers may be of
interest in their own right. We emphasize that the cluster-
specific reproducibility assessment is an important step in
the interpretation process.

A number of methods have been proposed for detecting
the ‘optimal’ number of clusters. Milligan and Cooper
(1985) provide an extensive review and comparison of
methods. Tibshirani et al. (2001) has proposed the ‘gap’
statistic for estimating an optimal number of clusters.
The optimal number of clusters is chosen where the
gap function shows a drop of larger than one standard
deviation, where the standard deviation is determined by
Monte Carlo simulation under a uniform null distribution.
It is not designed to control the probability of falsely
declaring the presence of multiple clusters. In contrast, we
take a hypothesis testing approach based on the difference
between the observed nearest neighbor distribution and
that expected under two different null distributions. We
generate the null distribution of the test statistic and do
not rely on use of a standard deviation. Our tests are not
directed at estimating the number of clusters, and so the
methods are complementary. Yeung et al. (2001) propose
a jackknife-type approach in which they successively
leave out experimental conditions (arrays) to compute
a figure-of-merit function that they plot to estimate an
optimal number of clusters. Their particular interest was in
clustering genes and they relied on the independence of the
experimental conditions for justification of their jackknife
approach. It is not clear if their method can be applied to
clustering specimens, as it is not reasonable to assume that
genes are independent. Golub et al. (1999) suggest a cross-
validation method for assessing clustering results that
involves building a predictor for the observed clusters and
qualitatively assessing whether the predictor provides a
high probability of an array being a member of one cluster
or another. This appears to provide useful information
when used for classifying a new set of expression profiles.
Without an independent data set, however, it may be
problematic. With thousands of candidate predictors, it
may be possible to develop a predictor that appears to
clearly distinguish among even random clusters. Ben-
Dor et al. (2001) have developed a computationally
intensive method for finding clusters and have proposed
measures for assessing the strength of the results obtained
from their clustering procedure. The utility of their
measures in the context of other clustering algorithms is
not yet established, however. Kerr and Churchill (2001)
recently proposed the use of an index equivalent to our
overall R-index, but they generated experimental error
perturbations by bootstraping residuals obtained from an
ANOVA model. Their methods require replicate profile
measurements from at least some specimens. Replicates

were not available in the data sets we considered. Also,
the type of replicates available must be consistent with
the totality of sources of experimental error that one
wishes to account for in the reproducibility assessment. In
our experience with microarray data, when replicates are
available they often incorporate only some sources of the
total experimental variation, for example hybridization of
a single sample to the multiple arrays, but not replication
at the level of re-sampling a tumor or re-isolating mRNA.
In settings where appropriate replicates are available,
bootstrap re-sampling could be readily incorporated into
all of our cluster reproducibility assessement methods.

We feel that the more detailed reproducibility assess-
ment methods we present here have several distinct ad-
vantages for interpreting the results of clustering biolog-
ical specimens (e.g. tumors) on the basis of microarray
data. First, the measures here have natural interpreta-
tions: robustness measured by proportion of preserved
pairings, or discrepancy measured by numbers of addi-
tions or omissions. Second, the ability to examine cluster-
specific reproducibility greatly enchanges understanding
of the structure of the data. This was clearly seen in the
melanoma data example. Had only measures for deter-
mining ‘optimal’ numbers of clusters been applied, they
would likely have lacked sensitivity to shifting around of
a few tumors, for example splitting of tumors 2 and 3 and
cleaving of tumor 5 from the 5–24 cluster. Our cluster
specific reproducibility measures very clearly indicated
what was going on.

There are several other examples of situations in which
ability to examine cluster-specific reproducibility will be
important. Suppose a set of profiles fell into three distinct
clusters, each of which could be further separated into
two subclusters. The mindset of an ‘optimal’ number of
clusters encourages one to choose three or six clusters
when in fact, the appropriate conclusion would be that
there is multi-level structure in the data. This multi-
level structure would be elucidated by examination of
cluster-specific reproducibilities at multiple cuts of the
tree. Another interesting example is one in which there
is a single very tight cluster that is surrounded by, but
separated from, many ‘noise’ elements. Any method
searching for an optimal number of clusters would have
difficulty because clustering of the noise points would be
essentially random and lacking in reproducibility, hence
obscuring the fact that there was a tight, reproducible
cluster in the middle. A method searching for an optimal
number of clusters would likely conclude that there is
one cluster, but this could not be distinguished from the
situation of ‘no clusters’. Applying the cluster specific
reproducibility measures to this situation, one would find
the tight cluster emerging as cuts of the tree corresponding
to higher numbers of clusters are considered.

In summary, we feel it is important that objective
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measures be used to interpret patterns of clustering and
assess the reproducibility. Although relating observed
clusters to known biology is one way to ‘validate’
observed clusters, a great hope in conducting microarray
studies is that new biological features will be uncovered.
Application of objective measures such as the ones we
have described here should help to distinguish novel and
potentially important biological findings from spurious
findings.
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