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ABSTRACT
Motivation: During the past decade, the new focus
on genomics has highlighted a particular challenge: to
integrate the different views of the genome that are
provided by various types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection
of genome-wide measurements. Each data set is repre-
sented via a kernel function, which defines generalized
similarity relationships between pairs of entities, such
as genes or proteins. The kernel representation is both
flexible and efficient, and can be applied to many different
types of data. Furthermore, kernel functions derived from
different types of data can be combined in a straightfor-
ward fashion. Recent advances in the theory of kernel
methods have provided efficient algorithms to perform
such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite pro-
gramming techniques to reduce the problem of finding
optimizing kernel combinations to a convex optimization
problem. Computational experiments performed using
yeast genome-wide data sets, including amino acid
sequences, hydropathy profiles, gene expression data
and known protein-protein interactions, demonstrate the
utility of this approach. A statistical learning algorithm
trained from all of these data to recognize particular
classes of proteins—membrane proteins and ribosomal
proteins—performs significantly better than the same
algorithm trained on any single type of data.
Availability: Supplementary data at http://noble.gs.
washington.edu/proj/sdp-svm.
Contact: noble@gs.washington.edu

INTRODUCTION

The recent availability of multiple types of genome-wide

data provides biologists with complementary views of
�
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a single genome and highlights the need for algorithms
capable of unifying these views. In yeast, for example, for
a given gene we typically know the protein it encodes, that
protein’s similarity to other proteins, its hydrophobicity
profile, the mRNA expression levels associated with the
given gene under hundreds of experimental conditions,
the occurrences of known or inferred transcription factor
binding sites in the upstream region of that gene, and the
identities of many of the proteins that interact with the
given gene’s protein product. Each of these distinct data
types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.

Different data sources are likely to contain different and
thus partly independent information about the task at hand.
Combining those complementary pieces of information
can be expected to enhance the total information about
the problem at hand. One problem with this approach,
however, is that genomic data come in a wide variety
of data formats: expression data are expressed as vectors
or time series; protein sequence data as strings from a
20-symbol alphabet; gene sequences are strings from a
different (4-symbol) alphabet; protein-protein interactions
are best expressed as graphs, and so on.

This paper presents a computational and statistical
framework for integrating heterogeneous descriptions of
the same set of genes. The approach relies on the use of
kernel-based statistical learning methods that have already
proven to be very useful tools in bioinformatics (Noble,
2004). These methods represent the data by means of
a kernel function, which defines similarities between
pairs of genes, proteins, etc. Such similarities can be
quite complex relations, implicitly capturing aspects of
the underlying biological machinery. One reason for the
success of kernel methods is that the kernel function
takes relationships that are implicit in the data and makes
them explicit, so that it is easier to detect patterns.
Each kernel function thus extracts a specific type of
information from a given data set, thereby providing a
partial description or view of the data. Our goal is to
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find a kernel that best represents all of the information
available for a given statistical learning task. Given
many partial descriptions of the data, we solve the
mathematical problem of combining them using a convex
optimization method known as semidefinite programming
(SDP) (Nesterov and Nemirovsky, 1994; Vandenberghe
and Boyd, 1996). This SDP-based approach (Lanckriet
et al., 2004) yields a general methodology for combining
many partial descriptions of data that is statistically sound,
as well as computationally efficient and robust.

In order to demonstrate the feasibility of these methods,
we apply them to the recognition of two important groups
of proteins in yeast—ribosomal proteins and membrane
proteins. The ribosome is a universal protein complex
that is responsible for the translation of mRNA into
the corresponding amino acid sequence via the universal
genetic code. The structure of the ribosome has been
solved (Schluenzen et al., 2000; Harms et al., 2001),
although the precise roles of many auxiliary factors are
not completely understood. Proteins that participate in the
ribosome share similar sequence features and correlated
mRNA expression patterns (Brown et al., 2000).

Membrane proteins are proteins that anchor in one of
various membranes in the cell, including the plasma, ER,
golgi, peroxisomal, vacuolar, cellular and mitochondrial
inner and outer membranes. Many membrane proteins
serve important communicative functions between cellular
compartments and between the inside and the outside of
the cell (Alberts et al., 1998). Classifying a protein as
a membrane protein or not based on protein sequence
is non-trivial and has been the subject of much previous
research (Engleman et al., 1986; Krogh et al., 2001; Chen
and Rost, 2002). This is a typical statistical learning
problem in which a single type of feature derived from
the protein sequence cannot provide the full story.

For both of these protein classes, we demonstrate that
incorporating knowledge derived from the amino acid
sequences, gene expression data and known protein-
protein interactions significantly improves classification
performance relative to our method trained on any single
type of data. The SDP-based approach also performs
better than a classifier trained using a naive, unweighted
combination of kernels, and the method continues to
perform well in the presence of artificially induced
experimental noise.

We begin by outlining the main ideas of the kernel ap-
proach to pattern analysis, providing examples of kernels
defined on yeast genome-wide data sets. We then describe
how these kernels can be integrated using SDP to provide
a unified description. Finally, we describe a series of com-
putational experiments that demonstrate the validity and
power of the kernel approach to data fusion for recogni-
tion of ribosomal and membrane proteins in yeast.

KERNEL METHODS
Kernel methods work by embedding data items (corre-
sponding to genes, proteins, etc.) into a vector space � ,
called a feature space (Cristianini and Shawe-Taylor,
2000; Schölkopf and Smola, 2002; Wahba, 1990; Vapnik,
1998, 1999). A key characteristic of kernel methods is
that the embedding in feature space is generally defined
implicitly, by specifying an inner product for the feature
space. Thus, for a pair of data items, ��� and ��� , denoting
their embeddings as ���	� ��
 and ���	� ��
 , respectively, we
specify the inner product of the embedded data, 
����	��� 
 ,
���	��� 
�� , via a kernel function ���	��������� 
 . Any symmetric,
positive semidefinite function is a valid kernel function,
corresponding to an inner product in some feature space.
Note that if all we require are inner products, then we do
not need to have an explicit representation of the mapping
� , nor do we even need to know the nature of the feature
space. It suffices to be able to evaluate the kernel function.

Evaluating the kernel on all pairs of data points yields a
symmetric, positive semidefinite matrix known as the ker-
nel matrix or the Gram matrix. Intuitively, a kernel matrix
can be regarded as a matrix of generalized similarity mea-
sures among the data points. The first stage of processing
in a kernel method is to reduce the data by computing this
matrix.

The reduction to a kernel matrix reflects the fact that
kernel methods are generally based on linear statistical
procedures in feature space. In particular, the classification
algorithm that we use in this paper—known as a support
vector machine (SVM, Boser et al., 1992)—forms a linear
discriminant boundary in feature space. Consider a data
set consisting of � pairs �	��������� 
 , where ��� is the � th data
item (e.g., a protein sequence), and � ��� �"!�# � #%$ is a label
(e.g., membrane or non-membrane). Compute the ��&'�
kernel matrix whose �	�(�*) 
 th entry is ���	� � ���,+ 
 . Given
this matrix, and given the labels � � , we can throw away
the original data; the problem of fitting the SVM to data
reduces to an optimization procedure that is based entirely
on the kernel matrix and the labels.

Different kernel functions correspond to different em-
beddings of the data and thus can be viewed as capturing
different notions of similarity. For example, in a space de-
rived from amino acid sequences, two genes that are close
to one another will have protein products with very simi-
lar amino acid sequences. This amino acid space would be
quite different from a space derived from microarray gene
expression measurements, in which closeness would in-
dicate similarity of the expression profiles of the genes. In
general, a single type of data can be mapped into many dif-
ferent feature spaces. The choice of feature space is made
implicitly via the choice of kernel function.

For the tasks of ribosomal and membrane protein
classification we experiment with seven kernel matrices
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Table 1. Kernel functions. The table lists the seven kernels used to compare
proteins, the data on which they are defined, and the method for computing
similarities. The final kernel, ������� , is included as a control. All kernel
matrices, along with the data from which they were generated, are available
at noble.gs.washington.edu/proj/sdp-svm.

Kernel Data Similarity measure���
	 protein sequences Smith-Waterman��� protein sequences BLAST����
���� protein sequences Pfam HMM������� hydropathy profile FFT���
� protein interactions linear kernel��� protein interactions diffusion kernel��� gene expression radial basis kernel������� random numbers linear kernel

derived from three different types of data: four from
the primary protein sequence, two from protein-protein
interaction data, and one from mRNA expression data.
These are summarized in Table 1.

Protein sequence: Smith-Waterman, BLAST and Pfam HMM
kernels. A homolog of a membrane protein is likely
also to be located in the membrane, and similarly for
the ribosome. Therefore, we define three kernel matrices
based upon standard homology detection methods. The
first two sequence-based kernel matrices ( ����� and ��� )
are generated using the BLAST (Altschul et al., 1990)
and Smith-Waterman (SW) (Smith and Waterman, 1981)
pairwise sequence comparison algorithms, as described
previously (Liao and Noble, 2002). Both algorithms use
gap opening and extension penalties of 11 and 1, and
the BLOSUM 62 matrix. Because matrices of BLAST
or Smith-Waterman scores are not necessarily positive
semidefinite, we represent each protein as a vector of
scores against all other proteins. Defining the similarity
between proteins as the inner product between the score
vectors (the so-called empirical kernel map, Tsuda, 1999)
leads to valid kernel matrices, one for the BLAST
score and one for the SW score. Note that including
in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The
third kernel matrix ( ���! #"�$ ) is a generalization of the
previous pairwise comparison-based matrices in which the
pairwise comparison scores are replaced by expectation
values derived from hidden Markov models in the Pfam
database (Sonnhammer et al., 1997).

Protein sequence: FFT kernel. The fourth sequence-
based kernel matrix ( �&%'%!( ) is specific to the membrane
protein recognition task. This kernel directly incorporates
information about hydrophobicity patterns, which are
known to be useful in identifying membrane proteins.
Generally, each membrane protein passes through the
membrane several times. The transmembrane regions
of the amino acid sequence are typically hydrophobic,

whereas the non-membrane portions are hydrophilic.
This specific hydrophobicity profile of the protein allows
it to anchor itself in the cell membrane. Because the
hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolu-
tion than the specific amino acid sequence. Therefore,
classical methods for determining whether a protein ) �
(consisting of * ) ��* amino acids) spans a membrane (Chen
and Rost, 2002), depend upon its hydropathy profile+ �,) � 
 �.-0/ 1324/ : a vector containing the hydrophobicities
of the amino acids along the protein (Engleman et al.,
1986; Black and Mould, 1991; Hopp and Woods, 1981).
The FFT kernel uses hydropathy profiles generated from
the Kyte-Doolittle index (Kyte and Doolittle, 1982). This
kernel compares the frequency content of the hydropathy
profiles of the two proteins. First, the hydropathy profiles
are pre-filtered with a low-pass filter to reduce noise:+  �,) � 
�57698 + �,) � 

where 6.5 �: � #<; # 
 is the impulse response of the fil-
ter and 8 denotes convolution with that filter. After pre-
filtering the hydropathy profiles (and if necessary append-
ing zeros to make them equal in length—a commonly used
technique not altering the frequency content), their fre-
quency contents are computed with the Fast Fourier Trans-
form (FFT) algorithm:=

 �,) � 
�5?>@>BA � +  �,) � 
�
DC
The FFT kernel between proteins ) � and )�+ is then
obtained by applying a Gaussian kernel function to the
frequency contents of their hydropathy profiles:

��%'%'( �,) � �4)�+ 
�5FE#GIH � ! *J*
=
 �,) � 
 !

=
 �,)�+ 
 *J* �#K ;�L 


with width L 5 #NM . This kernel detects periodicities in
the hydropathy profile, a feature that is relevant to the
identification of membrane proteins and complementary
to the previous, homology-based kernels.

Protein interactions: linear and diffusion kernels. For
the recognition of ribosomal proteins, protein-protein
interactions are clearly informative, since all ribosomal
proteins interact with other ribosomal proteins. For
membrane protein recognition, we expect information
about protein-protein interactions to be informative for
two reasons. First, hydrophobic molecules or regions of
molecules are probably more likely to interact with each
other than with hydrophilic molecules or regions. Second,
transmembrane proteins are often involved in signaling
pathways, and therefore different membrane proteins
are likely to interact with a similar class of molecules
upstream and downstream in these pathways (e.g., hor-
mones upstream or kinases downstream). The two protein
interaction kernels are generated using medium- and
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high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions
can be represented as an interaction matrix, in which rows
and columns correspond to proteins, and binary entries
indicate whether the two proteins interact.

The first interaction kernel matrix ( ����� ) is comprised
of linear interactions, i.e., inner products of rows and
columns from the centered, binary interaction matrix. The
more similar the interaction pattern (corresponding to a
row or column from the interaction matrix) is for a pair of
proteins, the larger the inner product will be.

An alternative way to represent the same interaction
data is to consider the proteins as nodes in a large graph.
In this graph, two proteins are linked when they interact
and otherwise not. Kondor and Lafferty (2002) propose
a general method for establishing similarities between
the nodes of a graph, based on a random walk on the
graph. This method efficiently accounts for all possible
paths connecting two nodes, and for the lengths of those
paths. Nodes that are connected by shorter paths or by
many paths are considered more similar. The resulting
diffusion kernel generates the second interaction kernel
matrix ( ��� ).

An appealing characteristic of the diffusion kernel
is its ability, like the empirical kernel map, to exploit
unlabeled data. In order to compute the diffusion kernel,
a graph is constructed using all known protein-protein
interactions, including interactions involving proteins
whose subcellular locations are unknown. Therefore,
the diffusion process includes interactions involving
unlabeled proteins, even though the kernel matrix only
contains entries for labeled proteins. This allows two
labeled proteins to be considered close to one another if
they both interact with an unlabeled protein.

Gene expression: radial basis kernel. Finally, we
also include a kernel constructed entirely from
microarray gene expression measurements. A col-
lection of 441 distinct experiments was down-
loaded from the Stanford Microarray Database
(genome-www.stanford.edu/microarray).
This data provides us with a 441-element expression
vector characterizing each gene. A Gaussian kernel
matrix ( ��� ) is computed from these vectors by applying
a Gaussian kernel function with width L 5 #NM M to each
pair of 441-element vectors, characterizing a pair of
genes. Gene expression data is expected to be useful for
recognizing ribosomal proteins, since their expression
signatures are known to be highly correlated with one
another. We do not expect that gene expression will be
particularly useful for the membrane classification task.
We do not need to eliminate the kernel a priori, however;
as explained in the following section, our method is able
to provide an a posteriori measure of how useful a data

source is relative to the other sources of data.

KERNEL METHODS FOR DATA FUSION
Each of the kernel functions described above produces,
for the yeast genome, a square matrix in which each
entry encodes a particular notion of similarity of one yeast
protein to another. Implicitly, each matrix also defines an
embedding of the proteins in a feature space. Thus, the
kernel representation casts heterogeneous data—variable-
length amino acid strings, real-valued gene expression
data, and a graph of protein-protein interactions—into the
common format of kernel matrices.

The kernel formalism also allows these various matrices
to be combined. Basic algebraic operations such as
addition, multiplication and exponentiation preserve the
key property of positive semidefiniteness, and thus allow a
simple but powerful algebra of kernels (Berg et al., 1984).
For example, given two kernel functions � � and � � ,
inducing the embeddings � � �	� 
 and � � �	� 
 , respectively,
it is possible to define the kernel � 5 � � � � � , inducing
the embedding ���	� 
B5	� � � �	� 
 ��� � �	� 
�
 . Of even greater
interest, we can consider parameterized combinations
of kernels. In particular, given a set of kernels � 5
� � � �(� � � CNCNC �(� $ $ , we can form the linear combination

� 5 $

��� ��� � � � � (1)

where the weights are constrained to be non-negative to
assure positive semidefiniteness: � ��� M�� � 5 # � CNCNC ��� .
We consider this kind of kernel combination in this paper.

As we have discussed, fitting a kernel-based statistical
classifier (such as the SVM) to data involves solving an
optimization problem based on the kernel matrix and the
labels. In particular, the SVM finds a linear discriminant
in feature space that has maximal distance (“margin”)
between the members of the positive and negative classes.
The algorithm for finding this optimal linear discrimi-
nant involves solving an optimization problem known
as a quadratic program, a particular form of convex
optimization problem for which efficient solutions are
known (Nesterov and Nemirovsky, 1994).

The specific form of SVM that we use in this paper
is the 1-norm soft margin support vector machine (Boser
et al., 1992; Schölkopf and Smola, 2002). An SVM forms
a linear discriminant boundary in the feature space � :6 �	� 
�5�� ( ���	� 
 ��� , where � � � and

� � - . Given a
labeled sample ��� 5 � �	� � ��� ��
 � CNCNC � �	���,����� 
 $ , a 1-norm
soft margin SVM optimizes with respect to � and

�
so as

to maximize the distance (“margin”) between the positive
and negative class, allowing misclassifications (therefore
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“soft margin”):�������� �	� 
 � ( � ��� �

� � �

 � (2)

subject to � � � � ( ���	� � 
 � � 
 � # ! 
 � �
 � � M � � 5 # � CNCNC ���
where

�
is a regularization parameter, trading off error

against margin. By considering the dual problem corre-
sponding to Equation (2), one can prove (Schölkopf and
Smola, 2002) that the weight vector can be expressed as
� 5�� ���� ��� � ���	� � 
 , where the support values � � are so-
lutions of the following dual quadratic program (QP):��� G� ; � (�� ! � ( diag ��� 
 � diag ��� 
 � (3)

subject to M�� � � � � � ( � 5 M �
where � 5 �	� � ��������� � � 
 ( and diag ��� 
 is a diagonal
matrix with entries given by the elements of � . An
unlabeled data item � ����� can subsequently be classified
by computing the linear function

6 �	� ����� 
�5�� ( ���	� ����� 
 � � 5 �

��� � � � ���	� � ��� ����� 
 ��� C

If 6 �	� ����� 
 is positive, then we classify � ����� as belonging
to class

� # ; otherwise, we classify � ����� as belonging to
class !�# .

In Lanckriet et al. (2004), we show that for a fixed
trace of � , the classification performance is bounded
by a function of the optimum achieved in Equation (3):
the smaller, the better the guaranteed performance. Thus,
whereas in the standard SVM formulation � is a given
kernel matrix, we can in fact learn an optimal kernel
matrix by parameterizing � and minimizing Equation (3)
with respect to these kernel parameters. More concretely,
we consider the parameterization in Equation (1) with
additional trace and positive semidefiniteness constraints.
Plugging this into Equation (3) and minimizing with
respect to � � gives:� ���! 2 ��� G� ; � ( � ! � ( diag ��� 
 " $


��� � � � � ��# diag ��� 
 �
subject to M � � � � � � ( � 5 M �

trace

" $

��� � � � � ��# 5%$ �

$

��� � � � � �'& M �

where $ is a constant. Again considering the Lagrangian
dual problem, we can show that this problem of finding

optimal � � and � � reduces to a convex optimization
problem known as a semidefinite program (SDP):�����! 2 � ()� *+� ,.-0/21 (4)

subject to trace

" $

��� ��� � � � # 5%$ �

$

� � � � � � �3& M �4 5 � � 
 � ��6 ��7 �
� � �86 ��7 � 
 ( 1 ! ; �:9 ( �<; & M �

where we let
5 � � 
�5 diag ��� 
 �	� $��� � � � � � 
 diag ��� 
 . SDP

can be viewed as a generalization of linear programming,
where scalar linear inequality constraints are replaced
by more general linear matrix inequalities (LMIs):> ��= 
 & M , meaning that the matrix > has to be in the
cone of positive semidefinite matrices, as a function of the
decision variables = . Note that the first LMI constraint in
Equation (4), � 5 � $��� � � � � �>& M , emerges very natu-
rally because the optimal kernel matrix must indeed come
from the cone of positive semidefinite matrices. Linear
programs and semidefinite programs are both instances
of convex optimization problems, and both can be solved
via efficient interior-point algorithms (Vandenberghe and
Boyd, 1996).

In this paper, the weights � � are constrained to be
non-negative and the � � are positive semidefinite and
normalized ( � � � 
 + + 5 # ) by construction; thus � &M is automatically satisfied. In that case, we can show
that the SDP in Equation (4) reduces to a quadratically
constrained quadratic program (QCQP), which is a
special case of SDP that can be solved more efficiently:��� G�?� ( ; � (�� ! $ 1 (5)

subject to 1 � #� � ( diag ��� 
 � � diag ��� 
 � �� ( � 5 M �M@� � � � �
for � 5 # � CNCNC ��� . Thus, by solving a QCQP, we are able
to find an adaptive combination of kernel matrices—and
thus an adaptive combination of heterogeneous informa-
tion sources—that solves our classification problem. The
output of our procedure is a set of weights � � and a dis-
criminant function based on these weights. We obtain a
classification decision that merges information encoded
in the various kernel matrices, and we obtain weights � �that reflect the relative importance of these information
sources.
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EXPERIMENTAL DESIGN
In order to test our kernel-based approach in the setting
of yeast protein classification, we use as a gold standard
the annotations provided by the MIPS Comprehensive
Yeast Genome Database (CYGD) (Mewes et al., 2000).
The CYGD assigns 1125 yeast proteins to particular
complexes, of which 138 participate in the ribosome.
The remaining approximately 5000 yeast proteins are
unlabeled. Similarly, CYGD assigns subcellular locations
to 2318 yeast proteins, of which 497 belong to various
membrane protein classes, leaving approximately 4000
yeast proteins with uncertain location.

The primary input to the classification algorithm is a
collection of kernel matrices from Table 1. For membrane
protein classification, for comparison with the SDP/SVM
learning algorithm, we consider several classical bio-
logical methods that are commonly used to determine
whether a Kyte-Doolittle plot corresponds to a membrane
protein, as well as a state-of-the-art technique using hid-
den Markov models (HMMs) to predict transmembrane
helices in proteins (Krogh et al., 2001). The first method
relies on the observation that the average hydrophobicity
of membrane proteins tends to be higher than that of non-
membrane proteins, because the transmembrane regions
are more hydrophobic. We therefore define 6 � as the
average hydrophobicity, normalized by the length of the
protein. We will compare the classification performance
of our statistical learning algorithm with this metric.

Clearly, however, 6 � is too simplistic. For example, pro-
tein regions that are not transmembrane only induce noise
in 6 � . Therefore, an alternative metric filters the hydropho-
bicity plot with a low-pass filter and then computes the
number, the height and the width of those peaks above a
certain threshold (Chen and Rost, 2002). The filter is in-
tended to smooth out periodic effects. We implement two
such filters, choosing values for the filter order and the
threshold based on Chen and Rost (2002). In particular,
we define 6 � as the area under the 7th-order low-pass fil-
tered Kyte-Doolittle plot and above a threshold value 2,
normalized by the length of the protein. Similarly, 6�� is the
corresponding area using a 20th-order filter and a thresh-
old of 1.6.

Finally, the Transmembrane HMM (TMHMM) web
server (www.cbs.dtu.dk/services/TMHMM) is
used to make predictions for each protein. In Krogh
et al. (2001), transmembrane proteins are identified by
TMHMM using three different metrics: the expected
number of amino acids in transmembrane helices, the
number of transmembrane helices predicted by the

�
-best

algorithm, and the expected number of transmembrane
helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two
lists of proteins, ranked by the number of predicted trans-

membrane helices ( A ��� ) and by the expected number of
residues in transmembrane helices ( A ����� ).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating
characteristic (ROC) score, which is the area under a
curve that plots true positive rate as a function of false
positive rate for differing classification thresholds (Hanley
and McNeil, 1982; Gribskov and Robinson, 1996). The
ROC score measures the overall quality of the ranking
induced by the classifier, rather than the quality of a single
point in that ranking. An ROC score of 0.5 corresponds
to random guessing, and an ROC score of 1.0 implies
that the algorithm succeeded in putting all of the positive
examples before all of the negatives. In addition, we
select the point on the ROC curve that yields a 1% false
positive rate, and we report the rate of true positives at this
point (TP1FP). Each experiment is repeated 30 times with
different random splits in order to estimate the variance of
the performance values.

RESULTS
We performed computational experiments that study the
performance of the SDP/SVM approach as a function of
the number of data sources, compare the approach to a
simpler approach using an unweighted combination of
kernels, study the robustness of the method to the presence
of noise, and for membrane protein classification, compare
the performance of the method to classical biological
methods and state-of-the-art techniques for membrane
protein classification.

Ribosomal Protein Classification
Figure 1(A) shows the results of training an SVM to
recognize the cytoplasmic ribosomal proteins, using vari-
ous kernel functions. Very good recognition performance
can be achieved using several types of data individually:
the Smith-Waterman kernel yields an ROC of 0.9903
and a TP1FP of 86.23%, and the gene expression kernel
yields corresponding values of 0.9995 and 98.31%.
However, combining all six kernels using SDP provides
still better performance (ROC of 0.9998 and TP1FP of
99.71%). These differences, though small, are statistically
significant according to a Bonferroni corrected Wilcoxon
signed rank test.

For this task, the SDP approach performs no better than
the naive approach of combining all six kernel matrices
in an unweighted fashion. Note, however, that the SDP
solution also provides an additional explanatory result, in
the form of the weights assigned to the kernels. These
weights are illustrated in Figure 1(A) and suggest that,
as expected, the cytoplasmic ribosomal proteins are best
defined by their expression profiles and, secondarily, by
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(A) Ribosomal proteins (B) Membrane proteins

Fig. 1. Combining data sets yields better classification performance. The height of the bars in the upper two plots are proportional to
the ROC score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given
kernel. Error bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the
relative weights of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy
measurements, are given in the online supplement.

their sequences. An additional benefit offered by SDP
over the naive approach is its robustness in the presence
of noise. In order to illustrate this effect, we omit the
expression kernel from the combination and add six
kernels generated from Gaussian noise ( � � � ����� � � ). This
set of kernels degrades the performance of the naive
combination, but has no effect on the SDP/SVM. With
six additional random kernels ( � ��� ����� � �*� ) the benefit of
optimizing the weights is even more apparent (see Table 2
and the online supplement).

Among the 30 train/test splits, seven proteins are consis-
tently mislabeled by SDP/SVM (see online supplement).
These include one, YLR406C (RPL31B), that was pre-
viously misclassified as non-ribosomal in an SVM-based
study using a smaller microarray expression data set
(Brown et al., 2000). In order to better understand the
seven false negatives, we separated out the kernel-specific
components of the SVM discriminant score. In nearly
every case, the component corresponding to the gene
expression kernel is the only one that is negative (data
not shown). In other words, these seven proteins show
atypical expression profiles, relative to the rest of the
ribosome, which explains their misclassification by the
SVM. Visual inspection of the expression matrix (online
supplement) verifies these differences.

Finally, the trained SVM was applied to the set of
approximately 5000 proteins that are not annotated in
CYGD as participating in any protein complex. Among
these, the SVM predicts that 14 belong in the cytoplasmic
ribosomal class (see online supplement). However, nine

of these predictions correspond to questionable ORFs,
each of which lies directly opposite a gene that encodes
a ribosomal protein. In these cases, the microarray
expression data for the questionable ORFs undoubtedly
reflect the strong pattern of expression from the corre-
sponding ribosomal genes. Among the remaining five
proteins, two (YNL119W and YKL056C) were predicted
to be ribosomal proteins in a previous SVM-based study
(Brown et al., 2000). YKL056C is particularly interesting:
it is a highly conserved, ubiqitous protein homologous
to the mammalian translationally controlled tumor pro-
tein (Gross et al., 1989) and to human IgE-dependent
histamine-releasing factor.

Membrane Protein Classification
The results of the first membrane protein classification
experiment are summarized in Figure 1(B). The plot
illustrates that SDP/SVM learns significantly better from
the heterogeneous data than from any single data type.
The mean ROC score using all seven kernel matrices
( M C � ; # ��� M C M M�;
	 ) is significantly higher than the best
ROC score using only one matrix ( M C�� 	 ��
 � M C M M�� � using
the diffusion kernel). This improvement corresponds to a
change in TP1FP of # � C � #�� , from # 
 C #���� to ��� C M���� and
a change in test set accuracy of 
 C ����� , from � # C ��M�� to
��� C ����� .

As expected, the sequence-based kernels yield good
individual performance. The value of these kernels is
evidenced by their corresponding ROC scores and by the
relatively large weights assigned to the sequence-based
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Table 2. Classification performance on the cytoplasmic ribosomal class, in the presence of noise or improper weighting. The table lists the percentage
of true positives at one percent false positives (TP1FP) and the ROC score for several combinations of kernels. The first three lines of results were obtained
using SDP-SVM, and the last three lines by setting the weights uniformly. Columns 1 through 5 report the average weights for the potentially informative
kernels (averaged over the training/test splits), column 6 contains the average weight for a first set of 6 random kernels (averaged over the 6 kernels and the
training/test splits) and column 7 similarly for an additional set of 6 random kernels. Each random kernel was generated by computing inner products on
randomly generated 400-element vectors, in which each vector component was sampled independently from a standard normal distribution. In the table, a
hyphen indicates that the corresponding kernel is not considered in the combination.��� 	 � � � ���
� ��� ��� ������� � � ��� ������� � � �	��
 TP1FP ROC

5.08 0.31 0.22 0.39 0.00 – – �
��� �������
� ����� ��� �
�
�
������� �
���
�
5.07 0.31 0.22 0.39 0.00 0.01 – �
�����������
�  
��� ��� �
�
�
�!����� �
���
�
5.06 0.30 0.22 0.38 0.01 0.02 0.01 �
��� �
�����
�  
"�� ��� �
�
�
�!����� �
�����
1.00 1.00 1.00 1.00 1.00 – – ��"�� �
���#��� �
��� ��� �
�
�
 ������ �
�����
1.00 1.00 1.00 1.00 1.00 1.00 – "
���  
 ��#��� �
��� ��� �������	����� �
�����
1.00 1.00 1.00 1.00 1.00 1.00 1.00 $���� ���%�#��� "
��� ��� �
 
�
�!����� �
�
���

kernels by the SDP. These weights are as follows: � � 5; C � ; , � � � 5 # C � ; , � �  "4$ 5 M C � 
 , � %'%'( 5 M C ��� ,

� ��� 5 M C M # , � � 5 # C ; # and � � 5 M C 
 � . & Thus, two of
the three kernel matrices that receive weights larger than 1
are derived from the amino acid sequence.

The results also show that the interaction-based diffu-
sion kernel is more informative than the expression kernel.
The diffusion kernel yields an individual ROC score which
is significantly higher than the expression kernel, and the
SDP also assigns a larger weight to the diffusion kernel
(1.21) than to the expression kernel (0.73). Accordingly,
removing the diffusion kernel reduces the percentage true
positives at one percent false positives from ��� C M���� to
�
	 C � ;�� , whereas removing the expression kernel has a
smaller effect, leading to a TP1FP of ��� C���� � . Further de-
scription of the results obtained when various subsets of
kernels are used is provided in the online supplement.

In order to test the robustness of our approach, we
performed a second experiment using four real kernels—
��� �(�&� � �(��� , and ��� —and four Gaussian noise
kernels � � � ����� � : . Using all eight kernels, SDP assigns
values to the random kernels weights that are close to
zero. Therefore, the overall performance, as measured
by TP1FP or ROC score, remains virtually unchanged.
In contrast, the performance of the uniformly weighted
kernel combination, which was previously competitive
with the SDP combination, degrades significantly in
the presence of noise, from TP1FP of 33.87% down to
26.24%. Thus, the SDP approach provides a kind of
insurance against the inclusion of noisy or irrelevant
kernels.

We also compared the membrane protein classification
performance of the SDP/SVM method with that of sev-
eral other techniques for membrane protein classification.
The ROC and TP1FP for these methods are listed in Ta-
ble 4. The results indicate that using learning in this con-
text dramatically improves the results relative to the sim-

& For ease of interpretation, we scale the weights such that their sum is equal
to the number ' of kernel matrices.

Table 4. Comparison of membrane protein recognition methods. Each
row in the table corresponds to one of the membrane protein recognition
methods described in the text: three methods that apply filters directly to the
hydrophobicity profile, two methods based upon the TMHMM model, and
the SDP/SVM approach. For each method, the ROC and TP1FP are reported.

Method ROC TP1FP( � 0.7345 �� �� �����( 
 0.7504 ����� $����(�)
0.7879 ���
� �
���* �,+ 0.7362 �
��� �
���* � ��� 0.8018 ���
� �
���

SDP/SVM 0.9219 �
 �� �
 ��

ple hydropathy profile approach. The SDP/SVM method
also improves, though to a lesser degree, upon the per-
formance of the state-of-the-art TMHMM model. How-
ever, the comparison to TMHMM is somewhat problem-
atic, for several reasons. First, TMHMM is provided as
a pre-trained model. As such, a cross-validated compari-
son with the SDP/SVM is not possible. In particular, some
members of the cross-validation test sets were almost cer-
tainly used in training TMHMM, making its performance
estimate too optimistic. On the other hand, TMHMM aims
to predict membrane protein topology across many differ-
ent genomes, rather than in a yeast-specific fashion. De-
spite these difficulties, the results in Table 4 are interesting
because they suggest that an approach that exploits multi-
ple genome-wide data sets may provide better membrane
protein recognition performance than a sequence-specific
approach.

DISCUSSION
We have described a general method for combining
heterogeneous genome-wide data sets in the setting
of kernel-based statistical learning algorithms, and we
have demonstrated an application of this method to the
problems of classifying yeast ribosomal and membrane
proteins. The performance of the resulting SDP/SVM
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Table 3. Classification performance on the membrane proteins, in the presence of noise or improper weighting. The table lists the percentage true
positives at one percent false positives (TP1FP) and the ROC score for several combinations of kernels. The first two lines of results were obtained using
SDP-SVM, and the last two lines were obtained using a uniform kernel weighting. Columns 1 through 8 report the average weights for the respective kernels
(averaged over the training/test splits). A hyphen indicates that the corresponding kernel is not considered in the combination.� � � �
	 � � � � � ��� � ��
 � � ) � ��� TP1FP ROC

1.81 1.05 0.73 0.42 – – – – �
"�� � �	����������� ��� �����
 !�#��� �
�
�
�
3.30 1.98 1.31 0.79 0.08 0.17 0.21 0.17 ��$ ��� $������ �
��� ��� ��� $�"!� ��� �
�
�
 
1.00 1.00 1.00 1.00 – – – – �
��� ��������� �
��� ��� �����
�!�#��� �
�
�
 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 �
 �� ��$�� �
� �
��� ��� �
 
����� ��� �
�
�
�

algorithm improves upon the SVM trained on any single
data set or trained using a naive combination of kernels.
Moreover, the SDP/SVM algorithm’s performance con-
sistently improves as additional genome-wide data sets
are added to the kernel representation and is robust in the
presence of noise.

? have presented a kernel-based approach to data
fusion that is complementary to that presented here. In
their approach, canonical correlation analysis (CCA) is
used to select features from the space defined by a
second kernel, and can be generalized to operate with
more than two kernels. Thus, whereas the SDP approach
combines different sources into a joint representation,
kernel CCA separates components of a single kernel
matrix, identifying the most relevant ones.

Semidefinite programming is viewed as a tractable
instance of general convex programming, because it
is known to be solvable in polynomial time, whereas
general convex programs need not be (Nesterov and
Nemirovsky, 1994). In practice, however, there are im-
portant computational issues that must be faced in any
implementation. In particular, our application requires the
formation and manipulation of � & � kernel matrices.
For genome-scale data, such matrices are large, and naive
implementation can create serious demands on memory
resources. However, kernel matrices often have special
properties that can be exploited by more sophisticated
implementations. In particular, it is possible to prove
that certain kernels necessarily lead to low-rank kernel
matrices, and indeed low-rank matrices are also often
encountered in practice (Williams and Seeger, 2000).
Methods such as incomplete Cholesky decomposition can
be used to find low-rank approximations of such matrices,
without even forming the full kernel matrix, and these
methods have been used successfully in implementations
of other kernel methods (Bach and Jordan, 2002; Fine and
Scheinberg, 2001). Time complexity is another concern.
The worst-case complexity of the SDP in (4) is

� �	� : � � 

(Lanckriet et al., 2004), although it can be solved in
� �	� � 
 , as a QCQP, under reasonable assumptions. In
practice, however, this complexity bound is not neces-
sarily reached by any given class of problem, and indeed
time complexity has been less of a concern than space

complexity in our work thus far. Moreover, the low-rank
approximation tools may also provide some help with
regards to time complexity. Nonetheless, running time
issues are a concern for deployment of our approach with
higher eukaryotic genomes, and new implementational
strategies may be needed.

Kernel-based statistical learning methods have a num-
ber of general virtues as tools for biological data analysis.
First, the kernel framework accommodates not only the
vectorial and matrix data that are familiar in classical sta-
tistical analysis, but also more exotic data types such as
strings, trees, graphs and text. The ability to handle such
data is clearly essential in the biological domain. Second,
kernels provide significant opportunities for the incorpo-
ration of more specific biological knowledge, as we have
seen with the FFT kernel and the Pfam kernel. Third, the
growing suite of kernel-based data analysis algorithms re-
quire only that data be reduced to a kernel matrix; this cre-
ates opportunities for standardization. Finally, as we have
shown here, the reduction of heterogeneous data types to
the common format of kernel matrices allows the develop-
ment of general tools for combining multiple data types.
Kernel matrices are required only to respect the constraint
of positive semidefiniteness, and thus the powerful tech-
nique of semidefinite programming can be exploited to
derive general procedures for combining data of hetero-
geneous format and origin.

We thus envision the development of general libraries
of kernel matrices for biological data, such as those
that we have provided at noble.gs.washington.
edu/proj/sdp-svm, that summarize the statistically-
relevant features of primary data, encapsulate biological
knowledge, and serve as inputs to a wide variety of
subsequent data analyses. Indeed, given the appropriate
kernel matrices, the methods that we have described here
are applicable to problems such as the prediction of
protein metabolic, regulatory and other functional classes,
the prediction of protein subcellular locations, and the
prediction of protein-protein interactions.

Finally, while we have focused on the binary classifi-
cation problem in the current paper, there are many pos-
sible extensions of our work to other statistical learning
problems. One notable example is the problem of trans-
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duction, in which the classifier is told a priori the iden-
tity of the points that are in the test set (but not their la-
bels). This approach can deliver superior predictive per-
formance (Vapnik, 1998), and would seem particularly ap-
propriate in gene or protein classification problems, where
the entities to be classified are often known a priori.
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